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Review of Classical Lagrangian Mechanics

Consider a classical point particle with mass m in a one-dimensional
potential V (x)

The force F on the particle is given by

F = −dV

dx
. (8.1)

Newton’s law then gives the equations of motion for the particle

F = mẍ = −dV

dx
, (8.2)

where ẋ = dx
dt , ẍ = d2x

dt2
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Review of Classical Lagrangian Mechanics

We may write down the Lagrangian L for this system as

L(x , ẋ) = kinetic energy − potential energy =
m

2
ẋ2 − V (x) (8.3)

The action for the system is given by

S =

∫
dtL (8.4)

Note: the equations of motion for the particle (8.2) follow from the
extremum of the action S:
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Review of Classical Lagrangian Mechanics

Extremum of the action:

0
!

= δS =

∫
dtδL(x , ẋ) =

∫
dt

[
∂L

∂x
δx +

∂L

∂ẋ
δẋ

]
,

=

∫
dt

[
∂L

∂x
δx +

d

dt

(
∂L

∂ẋ
δx

)
− δx d

dt

∂L

∂ẋ

]
,

=

∫
dtδx

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
+ boundary terms , (8.5)

Since any variation δx(t) is allowed, the expression in brackets must
vanish identically

This leads to the Lagrangian equations of motion

∂L

∂x
− d

dt

∂L

∂ẋ
= 0 = −dV

dx
−mẍ . (8.6)
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Relativistic Classical Field Theory

Lagrangian mechanics is for a point particle, which is localized at a
point

Field theory is for a field that need not be localized, but can extend
to all of space

A real-world example for a field is the temperature field T (t,~x),
which gives the temperature T at a position ~x and time t. The
temperature is an example for a (non-relativistic) scalar field

An example for a (non-relativistic) vector field would be the wind field
~v(t,~x), which depends on position ~x and time t but has three
components instead of just one

In the following we restrict ourselves to field theories that are
relativistic (though it is perfectly possible to consider non-relativistic
field theories)
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Relativistic Classical Field Theory

A relativistic field theory has the property that its classical action S is
invariant under the symmetry group of special relativity (Lorentz
transformations plus translations)

In this course, I assume you are familiar with special relativity; if not,
please review chapter 2 in the textbook

In special relativity, time and space are not independent, so writing
the action as S =

∫
dtL is not a good starting point since the volume

element dt does not transform properly

What does transform properly under the symmetries of special
relativity is the volume element of space-time dtd3x ≡ d4x such that
the action for a classical field theory can be written as

S =

∫
d4xL , (8.7)

where L is the Lagrangian density.
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Relativistic Classical Field Theory

In order to set up a proper relativistic field theory, we have to declare
the content of the field theory

Do we have scalar fields (like temperature), vector fields (like wind) or
tensor fields?

Arguably the simplest case is to start with a scalar field, which we
denote by φ(x), and which corresponds to a single degree of freedom
at every point in space-time xµ

Given the field content, we can construct a Lagrangian density L
from φ(x) and its derivatives

At this point, the only rule is that L must be a scalar under special
relativity transformations
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Relativistic Classical Field Theory

If L contains combinations of φ(x) and ∂µφ(x), allowed terms are

L ∝ φ2(x), lnφ(x), e−φ(x), ∂µφ(x)∂µφ(x), ∂µ∂ν∂ρ∂
µ∂ν∂ρφ . . . (8.8)

On the other hand, disallowed terms would be

L ∝ ∂µφ(x), ∂µ∂
µφ∂ρφ . . . (8.9)

To simplify the discussion, we will first limit the discussion to theories
with Lagrangians of the form

L = −1

2
∂µφ(x)∂µφ(x)− V (φ) , (8.10)

where V (φ) can be arbitrary at this point
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Relativistic Classical Field Theory

For Lagrangian densities of the form (8.10), the action is

S = −
∫

d4x

[
1

2
∂µφ(x)∂µφ(x) + V (φ)

]
(8.11)

Demanding that 0
!

= δS , one finds the equations of motion for the
field φ as

∂L
∂φ
− ∂µ

∂L
∂∂µφ

= 0 = −dV (φ)

dφ
− ∂µ∂µφ . (8.12)

In the following, I sometimes denote the operator

∂µ∂
µ ≡ � , (8.13)

which is called “Quabla” operator in a wordplay on ∇ = ∂i∂i
(“nabla”)
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Relativistic Classical Field Theory

The Euclidean action for (8.11) is readily calculated using Eq. (5.11):

LE (τ) = − lim
t→−iτ

L =
1

2
∂τφ∂τφ+

1

2
∂iφ∂iφ+ V (φ) (8.14)

so that

SE =

∫ β

0
dτd3x

[
1

2
∂τφ∂τφ+

1

2
∂iφ∂iφ+ V (φ)

]
. (8.15)

Since the integrand in the Euclidean action involves a
four-dimensional Euclidean quadratic form, a common notation is

SE =

∫
d4xE

[
1

2
∂aφ∂aφ+ V (φ)

]
, (8.16)

where dxE = dτd3x is the Euclidean integral measure and
a = 1, 2, 3, 4 is a four-dimensional Euclidean index
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