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Classical Field Theory

Recall from Lecture 8 the Euclidean action for a single scalar field

SE =

∫
d4xE

[
1

2
∂aφ∂aφ+ V (φ)

]
, (9.1)

where dxE = dτd3x is the Euclidean integral measure and
a = 1, 2, 3, 4 is a four-dimensional Euclidean index

Recall from Lecture 7 that the quantum theory partition function is
given by

Z =

∫
Dφe−SE , (9.2)

where periodicity on the thermal circle implies
φ(τ = β, x) = φ(τ = 0, x).
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Quantum Field Theory

Since the quantum nature is encoded in the infinite-dimensional path
integral measure Dφ, knowledge of the classical action provides
access to the full quantum field theory partition function

Unfortunately, not every classical action gives rise to a sensible
quantum field theory

Unfortunately, not every sensible quantum field theory can be solved

Fortunately, some quantum field theories can be solved, so let’s
calculate the partition function for a free scalar quantum field!
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Solving the Path Integral for Free Scalar Field Theory

In the following, let us consider the quantum field theory for a single
scalar field φ with potential

V (φ) =
m2φ2

2
. (9.3)

For this potential, the quantum field theory action (9.1) is a quadratic
form in φ

We can use Fourier transforms to solve the partition function just as
in lecture 6!

The only difference is that – in addition to the thermal circle
parametrized by τ – we now also need to Fourier transform w.r.t.
x , y , z
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Solving the Path Integral for Free Scalar Field Theory

Generalizing the setup a bit, we work in “D” spatial dimension:

x i , i = 1, 2, 3→ x i , i = 1, 2, 3, . . .D . (9.4)

We will assume that each x i ranges from
[
−L

2 ,
L
2

]
, and we will take

the continuum limit L→∞ at the end

As a consequence, we have

φ(τ,~x) =
T

LD

∑
n

∑
k1,k2,...kD

φ̃(ωn, ~k)e iωnτ+i~k·~x , (9.5)

where again ωn = 2πnT and each ki is discretized with steps
∆k = 2π

L .
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Solving the Path Integral for Free Scalar Field Theory

Plugging (9.5) into the action SE leads to

SE =
T

2LD

∑
ωn,~k

(
ω2
n + ~k2 + m2

)
|φ̃(ωn, ~k)|2 (9.6)

Since the exponent of a sum is a product, we have

e−SE =
∏
~k

exp

[
− T

2LD

∑
ωn

(
ω2
n + ~k2 + m2

)
|φ̃(ωn, ~k)|2

]
(9.7)

The exponent is exactly of the same form as for the quantum
mechanical harmonic oscillator (6.11), with different coefficients
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Solving the Path Integral for Free Scalar Field Theory

For the harmonic oscillator (6.11), we had

S
(HO)
E =

m(HO)T

2

∑
n

[
ω2
n + ω2

(HO)

]
|xn|2 , (9.8)

so that (9.6) implies the replacements

m(HO) →
1

LD
, ω2

(HO) → ~k2 + m2 ≡ E 2
k . (9.9)

Using the known form of Z (T ) for the harmonic oscillator (6.20), we
find for the quantum field theory partition function

Z =
∏
~k

1

2 sinh
(
Ekβ
2

) = e
−

∑
~k

[
Ekβ

2
+ln(1−e−βEk )

]
. (9.10)
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The Partition Function of Free Scalar QFT

In the limit where spatial dimensions become large L→∞, the sums
become integrals

lim
L→∞

1

LD

∑
~k

→
∫

dD~k

(2π)D
(9.11)

Recognizing LD = V to be the volume of D-dimensional space, this
leads to the continuum free QFT partition function

ln Zfree = −V

T

∫
dDk

(2π)D

(
Ek

2
+ T ln

(
1− e−βEk

))
. (9.12)

Unlike for quantum mechanics, this result is badly divergent for
any temperature!
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Making sense of QFT results

Divergent results are a common feature of quantum field theory

We need a procedure to see if a sensible physics answer is “hidden
beneath” these divergences

This procedure involves regulating the divergence (“regularization”)
as well as properly subtracting the divergence (“renormalization”) in
order to see if something sensible remains

For the case at hand 9.12, we can understand the origin of the
divergence, and properly deal with it
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Making sense of QFT results

Returning to the expression (9.10), the logarithm of the free partition
function is a sum of individual harmonic oscillators with frequency Ek

For very low temperatures T → 0, the free energy F = −T ln Zfree

becomes

F =
∑
~k

Ek

2
, (9.13)

which is just a sum over the zero-point energy of all the individual
harmonic oscillators

Since in the continuum limit there is an infinite number of oscillators,
and since the zero-point energy of each oscillator is non-vanishing,
the resulting free energy diverges

We understand the divergence, but it is boring: we already know
about the zero-point energy in quantum mechanics
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Regularizing Divergencies

There are many ways to subtract the “boring” divergence of summing
the zero-point energy of infinitely many oscillators

A “brute-force” approach is to simply cut the sum
∑

k at some
maximum value of momentum k = Λ; this approach is physically
well-motivated, but wreaks havoc with our cherished principle of
special relativity invariance

A much more elegant approach is to exploit our formalism for
arbitrary spatial dimension D, and work in non-integer dimensions;
this approach will be discussed in lecture 10
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