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A Divergence in the free QFT partition function

@ Recall from Lecture 9 that the free QFT partition function is given by

V [ d°k (E .
|anree—_T/(27T)D <2+T|n (1—6 )) 5 (101)

where D denotes the number of space dimensions and
Ek =V E2 + m?2.

@ Instead of Zpee, let us consider a physically intuitive observable, the
pressure p(T)

@ Given any partition function Z, basic thermodynamic relations define
the pressure as

p(T) = %In Z. (10.2)
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The pressure of free scalar quantum field theory

e From the partition function (10.1), the pressure of a single free scalar

field is
p(T) = —/(;’:)kD <i" +Tln (1 - e—ﬁfk)> . (10.3)

@ This expression for the pressure is divergent for all temperatures T

@ In particular, the divergence is there also for zero temperature

D D =
70 == [ ot =3 [ ap Ve 008

paul.romatschke®@colorado.edu PHYS 7270, Lecture 10 PHYS 7270, Fall 2020 4 /13



Regulating a divergent function

@ For further convenience, let us study the slightly more general function

®(m, D, A) = / (;’:)kD (/?2 + m2) - (10.5)

@ In terms of this function, the zero-temperature free scalar field theory
pressure in 3 space dimensions is given by

p(0) = —%cb <m, 3, —i) . (10.6)
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Regulating a divergent function

e Looking at the integrand of (10.5), we see that it only depends on
|k| = k, so we can do the angular integral

®(m,D,A) = (2?50/0 dkkP1 (K2 + m?) A (10.7)

D
where Qp = 252C is the “solid angle” in D spatial dimensions, e.g.
r(3)

Q3 = 47, QQ = 27, etc.

@ The integrand of (10.7) is well-behaved for any k € [0, c0) as long as
m#0

@ Assuming m # 0 in the following, the only divergence for ® arises for
high wave-number k — oo

@ Borrowing from the nomenclature of light at high wavenumber, this is
called an “ultraviolet” (UV) divergence

@ Later on we will also encounter divergencies for k — 0, which are
called “infrared” (IR) divergencies
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-
Regulating UV divergencies

@ Let us first study the degree of the UV divergence of ¢
@ Since the divergence is in the UV, we can concentrate on the high
momentum modes k, and neglect the mass scale in the integrand

@ Then we cut the momentum integral off at the scale A > 1 and find

the degree of divergence as
AD—2A
/ dkkP~1 (K + m?)~ / dkkP~1k—2A o

*D_2A°

(10.8)

@ In case of the pressure with D =3, A= —%, this gives p(0) oc A*
@ The pressure (10.4) diverges with degree four as A — oo
@ Actually we can evaluate p(0) exactly using cut-off regularization

p(0) = - [/\4+’\2—;|n (2/\>] (10.9)

1672 | m*  2m? m
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Dimensional Regularization

@ Now let us try a different regularization scheme
@ Instead of introducing a UV cut-off A, we can realize that the integral
for ® can be solved exactly:

_b %) b
ot 0A) = o lory + 2 oo
_ 1T (A - %) (m2)7A+g :

(471')% F(A)

@ The divergence for A = —% and D = 3 is apparent from the
divergence of the I function with negative argument, ' (—2) = co

@ But what if we work in “almost” three dimensions, e.g.
D=3-2¢, (10.11)

with lime — 07
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Dimensional Regularization

@ For D = 3 — 2¢, we have

1, 1 T (-2+¢) e
¢(m,3—26,—§)— PISERS (m?)%~e, (10.12)

which is finite for any € € (0,1).
@ We can use the property xI'(x) = I'(1 + x) of the '-function to write

M(1+¢)
(—=2+¢e)(—1+¢e)e

M(—2+¢)= (10.13)
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Dimensional Regularization

Then, we can expand all components of ® in a power series for small ¢, e.g.

(4m)2te = (2‘7§ [1+¢eln(4n) + O(?)] , (10.14)
(m*)?>= = m*(m?)~° = m*[1—cn(m?) +O(?)] ,

MN—-2+¢ = = I(e:;:—i)+s) 215 {1—#5(2 ’YE) —1—(’)(52)} ,

where yg = 0.577215664901 . . . is Euler's constant.
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Dimensional Regularization

o Putting everything together, we obtain for the zero-temperature
pressure

m4

P(0) = 6472

g — In(m2) + In(47) —ve + g + O(e) (10.15)

@ The pressure diverges as € — 0, as with cut-off regularization

@ There's only one weird thing: there is a mass squared under the
logarithm; we shouldn’t have a dimensionful quantity in the log!

@ It's coming from the expansion of (m?)2=¢ in (10.14)

@ And this is coming from the integral (10.5) having non-integer mass
dimension for D = 3 — 2¢
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Dimensional Regularization

@ To avoid a dimensionful quantity under the logarithm, we re-define
the function ® from (10.5) in D = 3 — 2¢ dimensions as

d372€k . —A
®(m,3 —2¢,A) = p*° / 2y 2= <k2 + m2> : (10.16)

@ The parameter p is arbitrary, and is taken to have dimensions of
energy (mass)

@ This ensures that the pressure has mass dimension four even if € # 0

o We call p the renormalization scale parameter
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Dimensional Regularization

@ With the redefinition (10.16) for non-integer dimensions, the
dimensionally-regulated zero-temperature pressure then reads

p(0) m [1 +In <:722) +In(47) — ve + g +0O0(e)| (10.17)

= 64n2 | e

@ It is customary to further simplify this expression by introducing
instead of u the so-called “MS scheme” scale parameter

[ = AmpleE (10.18)
@ In MS then
m* [1 i 3
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