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A Divergence in the free QFT partition function

Recall from Lecture 9 that the free QFT partition function is given by

lnZfree = −V

T

∫
dDk

(2π)D

(
Ek

2
+ T ln

(
1− e−βEk

))
, (10.1)

where D denotes the number of space dimensions and

Ek =
√
~k2 + m2.

Instead of Zfree, let us consider a physically intuitive observable, the
pressure p(T )

Given any partition function Z , basic thermodynamic relations define
the pressure as

p(T ) =
T

V
lnZ . (10.2)
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The pressure of free scalar quantum field theory

From the partition function (10.1), the pressure of a single free scalar
field is

p(T ) = −
∫

dDk

(2π)D

(
Ek

2
+ T ln

(
1− e−βEk

))
. (10.3)

This expression for the pressure is divergent for all temperatures T

In particular, the divergence is there also for zero temperature

p(0) = −1

2

∫
dDk

(2π)D
Ek = −1

2

∫
dDk

(2π)D

√
~k2 + m2 (10.4)
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Regulating a divergent function

For further convenience, let us study the slightly more general function

Φ(m,D,A) =

∫
dDk

(2π)D

(
~k2 + m2

)−A
. (10.5)

In terms of this function, the zero-temperature free scalar field theory
pressure in 3 space dimensions is given by

p(0) = −1

2
Φ

(
m, 3,−1

2

)
. (10.6)
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Regulating a divergent function

Looking at the integrand of (10.5), we see that it only depends on
|~k| ≡ k , so we can do the angular integral

Φ(m,D,A) =
ΩD

(2π)D

∫ ∞
0

dkkD−1
(
k2 + m2

)−A
, (10.7)

where ΩD = 2π
D
2

Γ(D
2 )

is the “solid angle” in D spatial dimensions, e.g.

Ω3 = 4π, Ω2 = 2π, etc.

The integrand of (10.7) is well-behaved for any k ∈ [0,∞) as long as
m 6= 0

Assuming m 6= 0 in the following, the only divergence for Φ arises for
high wave-number k →∞
Borrowing from the nomenclature of light at high wavenumber, this is
called an “ultraviolet” (UV) divergence

Later on we will also encounter divergencies for k → 0, which are
called “infrared” (IR) divergencies

paul.romatschke@colorado.edu PHYS 7270, Lecture 10 PHYS 7270, Fall 2020 6 / 13



Regulating UV divergencies

Let us first study the degree of the UV divergence of Φ

Since the divergence is in the UV, we can concentrate on the high
momentum modes k , and neglect the mass scale in the integrand

Then we cut the momentum integral off at the scale Λ� 1 and find
the degree of divergence as∫ Λ

0
dkkD−1

(
k2 + m2

)−A ∝ ∫ Λ

dkkD−1k−2A ∝ ΛD−2A

D − 2A
, (10.8)

In case of the pressure with D = 3, A = −1
2 , this gives p(0) ∝ Λ4

The pressure (10.4) diverges with degree four as Λ→∞
Actually we can evaluate p(0) exactly using cut-off regularization

p(0) = − m4

16π2

[
Λ4

m4
+

Λ2

2m2
− 1

2
ln

(
2Λ

m

)]
(10.9)
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Dimensional Regularization

Now let us try a different regularization scheme

Instead of introducing a UV cut-off Λ, we can realize that the integral
for Φ can be solved exactly:

Φ(m,D,A) =
ΩD

(2π)D
Γ
(
A− D

2

)
Γ
(
1 + D

2

)
DΓ(A)

(m2)−A+D
2 ,(10.10)

=
1

(4π)
D
2

Γ
(
A− D

2

)
Γ(A)

(m2)−A+D
2 ,

The divergence for A = −1
2 and D = 3 is apparent from the

divergence of the Γ function with negative argument, Γ (−2) =∞
But what if we work in “almost” three dimensions, e.g.

D = 3− 2ε , (10.11)

with lim ε→ 0?
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Dimensional Regularization

For D = 3− 2ε, we have

Φ(m, 3− 2ε,−1

2
) =

1

(4π)
3
2
−ε

Γ (−2 + ε)

Γ(−1
2 )

(m2)2−ε , (10.12)

which is finite for any ε ∈ (0, 1).

We can use the property xΓ(x) = Γ(1 + x) of the Γ-function to write

Γ(−2 + ε) =
Γ(1 + ε)

(−2 + ε)(−1 + ε)ε
(10.13)
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Dimensional Regularization

Then, we can expand all components of Φ in a power series for small ε, e.g.

(4π)−
3
2

+ε =
2
√
π

(4π)2

[
1 + ε ln(4π) +O(ε2)

]
, (10.14)

(m2)2−ε = m4(m2)−ε = m4
[
1− ε ln(m2) +O(ε2)

]
,

Γ(−2 + ε) =
Γ(1 + ε)

(−2 + ε)(−1 + ε)ε
=

1

2ε

[
1 + ε

(
3

2
− γE

)
+O(ε2)

]
,

where γE = 0.577215664901 . . . is Euler’s constant.
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Dimensional Regularization

Putting everything together, we obtain for the zero-temperature
pressure

p(0) =
m4

64π2

[
1

ε
− ln(m2) + ln(4π)− γE +

3

2
+O(ε)

]
(10.15)

The pressure diverges as ε→ 0, as with cut-off regularization

There’s only one weird thing: there is a mass squared under the
logarithm; we shouldn’t have a dimensionful quantity in the log!

It’s coming from the expansion of (m2)2−ε in (10.14)

And this is coming from the integral (10.5) having non-integer mass
dimension for D = 3− 2ε
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Dimensional Regularization

To avoid a dimensionful quantity under the logarithm, we re-define
the function Φ from (10.5) in D = 3− 2ε dimensions as

Φ(m, 3− 2ε,A) = µ2ε

∫
d3−2εk

(2π)3−2ε

(
~k2 + m2

)−A
. (10.16)

The parameter µ is arbitrary, and is taken to have dimensions of
energy (mass)

This ensures that the pressure has mass dimension four even if ε 6= 0

We call µ the renormalization scale parameter
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Dimensional Regularization

With the redefinition (10.16) for non-integer dimensions, the
dimensionally-regulated zero-temperature pressure then reads

p(0) =
m4

64π2

[
1

ε
+ ln

(
µ2

m2

)
+ ln(4π)− γE +

3

2
+O(ε)

]
(10.17)

It is customary to further simplify this expression by introducing
instead of µ the so-called “MS scheme” scale parameter

µ̄2 = 4πµ2e−γE (10.18)

In MS then

p(0) =
m4

64π2

[
1

ε
+ ln

(
µ̄2

m2

)
+

3

2
+O(ε)

]
(10.19)
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