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]
Regulated QFT Observables

@ Recall from Lecture 10 that we can regulate the divergencies in QFT
with different methods

@ Using cut-off regularization, we found for the pressure of a single free
scalar field (10.9):
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e Using dimensional regularization in MS, we found (10.19):
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]
Regulated QFT Observables

@ Because we used different regularization schemes, the expressions
(11.1), (11.2) look different

@ For A — o0, (11.1) becomes large and negative
e For e — 0, (11.2) becomes large and positive

@ In fact, the only thing that is identical between (11.1), (11.2) is the
coefficient of the logarithm, 6’;’%

@ How can this be? Shouldn't an observable such as the pressure be
independent from the regularization scheme?
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Renormalization — poor man'’s version

@ Recall that all we've been talking about so far is the divergence in the
pressure at zero temperature

@ This is the pressure of the vacuum (a.k.a. “cosmological constant”)

@ The actual pressure is temperature-dependent, and given by (10.3):

p(T)=p(0)— T (;’;/)‘3 In (1 - e—ﬁfk) . (11.3)

@ But except for p(0), the above integral is convergent!

o If we are willing to just consider the difference of p(T) — p(0), then
we have a perfectly fine quantum field theory result!
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Renormalization — poor man'’s version

@ Instead of normalizing the pressure absolutely, we could renormalize
this observable by demanding that the pressure of the vacuum is zero

@ We could call this quantity the “renormalized” pressure

P (T) = p(T)—p(0) = — /d3k In (1 - efﬁEk) = Jg(T,m).

(27)?
(11.4)

@ The renormalized pressure is finite for any temperature. In the case of
vanishing mass (m=0), we can evaluate it analytically as a homework

problem:
214
. T
lim p™*(T)=—Jg(T,0) = (11.5)
m—0 90
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Renormalization — poor man'’s version

@ In this “poor-man’s version” of renormalization, we have

p(T =0)=0. (11.6)

@ While this is not a bad choice, it's a choice nonetheless

@ For instance, we could have chosen the renormalized pressure to
vanish at a temperature different from T =0

@ In fact, any renormalization condition of the form
P (T =p)=0, (11.7)

works, where we call 14 the renormalization scale
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Renormalization — general remarks

@ For renormalization of the pressure, we need a condition at an
arbitrary scale

@ Another word for “condition” is scheme, so we need to pick a
“renormalization scheme”

@ We also need a scale at which we evaluate the condition, which is
called the “renormalization scale”

e Different choices of renormalization scale/scheme lead to different
renormalized observables; for instance, consider (11.7) once for u; = 0
and once for pup =1 eV. The corresponding renormalized pressure
functions p1(T), p2( T) will differ from each other by a constant
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Towards a More Formal View of Renormalization

@ So far we have considered a “poor-man’s” version of renormalization
where we simply discard the divergent part of our QFT result for the
pressure

@ However, we can proceed in a more systematic fashion

@ Recall that in lecture 8, we said that a large number of terms was
allowed for the classical Lagrangian £, cf. Eq. (8.8), but we chose to
restrict to the form (8.10) for simplicity

@ Let’s now revisit this choice, and consider the slightly more general
Lagrangian

£ = —30,0(06(x) ~ V(9) ~ K. (118)

where K is an overall constant (we could equally well take K to be
part of V(¢))
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Towards a More Formal View of Renormalization

e Using again a potential V(¢) = g as in lecture 9, we have the
Euclidean action
4 1 m
Sg = d*xg Eaaqf)aa(ﬁ + 7¢ + K (11.9)

@ Following exactly the same steps as in lecture 9, we obtain a modified
expression for the pressure:

D
p(T) = —K-— (gﬂ)kD <E2k+TIn (1—e—55k))
= —K+p(0)— Jg(T,m). (11.10)
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Towards a More Formal View of Renormalization

@ Let us first regularize the divergence in p(0) using the momentum
cutoff, cf. (11.1):

m* [A* N2 1 AN2
PT) ==K = Jo(T.m) = 3675 m4+zmz‘4'”<mz)]’
(11.11)

and recall that Jg(T, m) is finite for all T
@ Since the constant K is arbitrary, we can choose it as we want
@ In particular, we can choose K to be divergent as A — oo

@ In the cut-off renormalization scheme and scale parameter picyt, let us
therefore choose

m* A% A2 1 (4N
K=——— | =+ — —ZIn[—— 11.12
ot i oo (y)] 002
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Towards a More Formal View of Renormalization

@ Now let’s redo the calculation in dimensional regularization, cf.

(11.2):
p(T) = —K — Jg(T,m) +

so that in MS we choose

m* 1 fi2 3
—+In{— = 11.13
6472 [£+ n<m2>+2} o )

m* 1

~ 64nle

(11.14)

(There is a reason why it is called “minimal-subtraction” scheme)
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N
Towards a More Formal View of Renormalization

@ In cut-off renormalization, we therefore have

m* P
ren _ cu
1% (T7lucut)_*JB(Tam)+64ﬂ_2 In< m2> 3

(11.15)

where we have made the dependence on the renormalization scale
parameter ey explicit

@ By contrast, in MS we get

_ m4 ﬁZe%
pren(T”LL) —JB(T, m) + mln ? (1116)
@ The results for p™" are identical if we identify
3_
o = €21 (11.17)
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Renormalization

@ We can use the freedom in the classical Lagrangian £ to add
additional terms called “counterterms”

@ We need a regularization scheme to handle divergent integrals (e.g.
A, €)

@ We can let the counterterms depend on the regularization parameter
and use them to “cancel” the divergent part of the integrals

o We are left with finite (“renormalized”) observables that in general
still depend on the renormalization scale

@ Renormalized quantities are different in different renormalization
schemes; however, it is possible to convert between renormalization
schemes through converting the renormalization scale
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The Cosmological Constant

@ Regardless of the renormalization scale chosen, the renormalized
pressure depends is scale dependent

@ For free scalar quantum field theory, this cannot be avoided as long as
m#0

@ Recall that the T = 0 pressure is basically the cosmological constant:
the most common interpretation of this “feature” is that the
cosmological constant depends on scale

@ While we cannot calculate it's value, our result suggests that the
cosmological constant is not constant; it changes with time!
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