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Regulated QFT Observables

Recall from Lecture 10 that we can regulate the divergencies in QFT
with different methods

Using cut-off regularization, we found for the pressure of a single free
scalar field (10.9):

p(0) = − m4

16π2

[
Λ4

m4
+

Λ2

2m2
− 1

4
ln

(
4Λ2

m2

)]
. (11.1)

Using dimensional regularization in MS, we found (10.19):

p(0) =
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]
. (11.2)
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Regulated QFT Observables

Because we used different regularization schemes, the expressions
(11.1), (11.2) look different

For Λ→∞, (11.1) becomes large and negative

For ε→ 0, (11.2) becomes large and positive

In fact, the only thing that is identical between (11.1), (11.2) is the

coefficient of the logarithm, m4

64π2

How can this be? Shouldn’t an observable such as the pressure be
independent from the regularization scheme?
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Renormalization – poor man’s version

Recall that all we’ve been talking about so far is the divergence in the
pressure at zero temperature

This is the pressure of the vacuum (a.k.a. “cosmological constant”)

The actual pressure is temperature-dependent, and given by (10.3):

p(T ) = p(0)− T

∫
d3k

(2π)3
ln
(

1− e−βEk

)
. (11.3)

But except for p(0), the above integral is convergent!

If we are willing to just consider the difference of p(T )− p(0), then
we have a perfectly fine quantum field theory result!
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Renormalization – poor man’s version

Instead of normalizing the pressure absolutely, we could renormalize
this observable by demanding that the pressure of the vacuum is zero

We could call this quantity the “renormalized” pressure

pren(T ) ≡ p(T )−p(0) = −T

∫
d3k

(2π)3
ln
(

1− e−βEk

)
≡ −JB(T ,m) .

(11.4)

The renormalized pressure is finite for any temperature. In the case of
vanishing mass (m=0), we can evaluate it analytically as a homework
problem:

lim
m→0

pren(T ) = −JB(T , 0) =
π2T 4

90
. (11.5)
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Renormalization – poor man’s version

In this “poor-man’s version” of renormalization, we have

pren(T = 0) = 0 . (11.6)

While this is not a bad choice, it’s a choice nonetheless

For instance, we could have chosen the renormalized pressure to
vanish at a temperature different from T = 0

In fact, any renormalization condition of the form

pren(T = µ) = 0 , (11.7)

works, where we call µ the renormalization scale
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Renormalization – general remarks

For renormalization of the pressure, we need a condition at an
arbitrary scale µ

Another word for “condition” is scheme, so we need to pick a
“renormalization scheme”

We also need a scale at which we evaluate the condition, which is
called the “renormalization scale”

Different choices of renormalization scale/scheme lead to different
renormalized observables; for instance, consider (11.7) once for µ1 = 0
and once for µ2 = 1 eV. The corresponding renormalized pressure
functions p1(T ), p2(T ) will differ from each other by a constant
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Towards a More Formal View of Renormalization

So far we have considered a “poor-man’s” version of renormalization
where we simply discard the divergent part of our QFT result for the
pressure

However, we can proceed in a more systematic fashion

Recall that in lecture 8, we said that a large number of terms was
allowed for the classical Lagrangian L, cf. Eq. (8.8), but we chose to
restrict to the form (8.10) for simplicity

Let’s now revisit this choice, and consider the slightly more general
Lagrangian

L = −1

2
∂µφ(x)∂µφ(x)− V (φ)− K , (11.8)

where K is an overall constant (we could equally well take K to be
part of V (φ))
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Towards a More Formal View of Renormalization

Using again a potential V (φ) = m2φ2

2 as in lecture 9, we have the
Euclidean action

SE =

∫
d4xE

[
1

2
∂aφ∂aφ+

m2

2
φ2 + K

]
(11.9)

Following exactly the same steps as in lecture 9, we obtain a modified
expression for the pressure:

p(T ) = −K −
∫

dDk

(2π)D

(
Ek

2
+ T ln

(
1− e−βEk

))
= −K + p(0)− JB(T ,m) . (11.10)
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Towards a More Formal View of Renormalization

Let us first regularize the divergence in p(0) using the momentum
cutoff, cf. (11.1):

p(T ) = −K − JB(T ,m)− m4

16π2

[
Λ4

m4
+

Λ2

2m2
− 1

4
ln

(
4Λ2

m2

)]
,

(11.11)
and recall that JB(T ,m) is finite for all T

Since the constant K is arbitrary, we can choose it as we want

In particular, we can choose K to be divergent as Λ→∞
In the cut-off renormalization scheme and scale parameter µcut, let us
therefore choose

K = − m4

16π2

[
Λ4

m4
+

Λ2

2m2
− 1

4
ln

(
4Λ2

µ2cut

)]
(11.12)
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Towards a More Formal View of Renormalization

Now let’s redo the calculation in dimensional regularization, cf.
(11.2):

p(T ) = −K − JB(T ,m) +
m4

64π2

[
1

ε
+ ln

(
µ̄2

m2

)
+

3

2

]
, (11.13)

so that in MS we choose

K =
m4

64π2
1

ε
(11.14)

(There is a reason why it is called “minimal-subtraction” scheme)
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Towards a More Formal View of Renormalization

In cut-off renormalization, we therefore have

pren(T , µcut) = −JB(T ,m) +
m4

64π2
ln

(
µ2cut
m2

)
, (11.15)

where we have made the dependence on the renormalization scale
parameter µcut explicit

By contrast, in MS we get

pren(T , µ̄) = −JB(T ,m) +
m4

64π2
ln

(
µ̄2e

3
2

m2

)
(11.16)

The results for pren are identical if we identify

µ2cut = e
3
2 µ̄2 (11.17)
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Renormalization

We can use the freedom in the classical Lagrangian L to add
additional terms called “counterterms”

We need a regularization scheme to handle divergent integrals (e.g.
Λ, ε)

We can let the counterterms depend on the regularization parameter
and use them to “cancel” the divergent part of the integrals

We are left with finite (“renormalized”) observables that in general
still depend on the renormalization scale

Renormalized quantities are different in different renormalization
schemes; however, it is possible to convert between renormalization
schemes through converting the renormalization scale

paul.romatschke@colorado.edu PHYS 7270, Lecture 11 PHYS 7270, Fall 2020 13 / 14



The Cosmological Constant

Regardless of the renormalization scale chosen, the renormalized
pressure depends is scale dependent

For free scalar quantum field theory, this cannot be avoided as long as
m 6= 0

Recall that the T = 0 pressure is basically the cosmological constant:
the most common interpretation of this “feature” is that the
cosmological constant depends on scale

While we cannot calculate it’s value, our result suggests that the
cosmological constant is not constant; it changes with time!
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