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Review from past lectures

In lecture 12, the perturbative expansion of the pressure was given as

p = pfree + p(1) + p(2) + . . . (14.1)

The first-order perturbative correction was given as

p(1) = − 1

βV
〈SI 〉 (14.2)

Second-order:

p(2) =
1

βV

1

2

(
〈S2

I 〉 − 〈SI 〉2
)
,

(14.3)
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Applying Wick’s theorem

Using Wick’s theorem, the first-order perturbative correction is

p(1) = − 3λ

βV

∫
d4x (〈φ(x)φ(x)〉))2 . (14.4)

We will call the object 〈φ(x)φ(y)〉 the (free) “propagator” or (free)
“two-point function”

It represents how information gets passed from point x to point y

We can represent it as a line:

〈φ(x)φ(y)〉 =

x y
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Feynman Diagrams

For the first-order pressure, we need 〈φ(x)φ(x)〉
Because the arguments of φ are the same, the line ends at its origin

It’s a loop:

〈φ(x)φ(x)〉 =

Because (14.4) has two propagators that close onto themselves, we
have two loops;and there is a coupling λ that we’ll denote as a dot;
so we get

p(1) =
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Feynman Diagrams

The pictorial representation of (14.4) is called a “Feynman diagram”

It contains all the relevant information contained in the equation

We already know that a line means 〈φ(x)φ(y)〉
Now add to this the rule that a dot means a “vertex”

= −λ

...and that we have to keep track on how many ways there are to
draw the diagram (the combinatorial factor)
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Combinatorial Factor

Let’s do an example: Start with a single vertex:

= −λ

Now pick one of the “legs” and connect with another “leg”
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Combinatorial Factor

Let’s do an example: Start with a single vertex:

= −3λ〈φ(x)φ(x)〉

Now pick one of the “legs” and connect with another “leg”
There are 3 other legs to choose from, so we get the factor three and one
propagator
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Combinatorial Factor

Let’s do an example: Start with a single vertex:

= −3λ〈φ(x)φ(x)〉

Now pick another “leg” and connect it
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Combinatorial Factor

Let’s do an example: Start with a single vertex:

= −3λ〈φ(x)φ(x)〉〈φ(x)φ(x)〉

Now pick another “leg” and connect it
There is only one choice left for the connection, so we get a factor of 1,
and another propagator
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Feynman Diagrams

The pictorial representation of (14.4) is called a “Feynman diagram”

It contains all the relevant information contained in the equation

We already know that a line means 〈φ(x)φ(y)〉
Now add to this the rule that a dot means a “vertex”

= −λ

...and that we have to keep track on how many ways there are to
draw the diagram (the combinatorial factor)

...a little extra thought then leads to an additional rule giving an
integral, so that

p(1) = = −3λ 1
βV

∫
x

(
〈φ2(x)〉

)2
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Feynman Diagrams

Feynman diagrams are a shorthand notation for integrals in
perturbation theory

To decode Feynman diagrams, one must first calculate the so-called
“Feynman rules”

Feynman rules can be formulated in coordinate-space (x-space) or
momentum space

Expressing perturbation theory in Feynman diagrams can lead to
simplifications (mostly at higher order in perturbation theory)

It is hard (but not impossible) to express non-perturbative results
using Feynman diagrams

As a consequence, Feynman diagrams are most useful in perturbation
theory (whenever the coupling is very weak, λ� 1)
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Example of simplification using Feynman Diagrams

Let us point out one example where Feynman diagrams simplify a
perturbative calculation

Recall from (14.3) that the pressure to second order in perturbation
theory is

p(2) =
1

βV

1

2

(
〈S2

I 〉 − 〈SI 〉2
)

Expanding 〈S2
I 〉 in Feynman diagrams we have

〈S2
I 〉 = + × +
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Disconnected diagrams

We call × a “disconnected” diagram

This is because there is no propagator connecting the two vertices, so the
corresponding integral factorizes
The term “disconnected diagram” generalizes to all diagrams where at
least one vertex is not connected to the rest of the diagram
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Example of simplification using Feynman Diagrams

Expanding 〈S2
I 〉 in Feynman diagrams we have

〈S2
I 〉 = + × +

From first-order perturbation theory, we have

〈SI 〉2 = ×

Taken together, for p(2) the “disconnected” diagrams exactly cancel!

p(2) = +
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Feynman Diagrams

The cancellation of the disconnected diagrams in p(2) is not a
coincidence

One can show that for physical observables (such as the pressure), all
disconnected diagrams cancel

As a consequence, one only needs to consider connected diagrams
when calculating observables in perturbation theory

This is a major simplification when performing high order perturbative
calculations!
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