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Review

In lecture 14, we found a perturbative expression for the pressure of
scalar field theory with φ4 interaction

To first order in perturbation theory we had (14.4):

p(1) = pfree −
3λ

βV

∫
x

(〈φ(x)φ(x)〉)2 . (15.1)

We still have not discussed on how to calculate the propagator
〈φ(x)φ(y)〉, which is the subject of this lecture
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The Free Propagator

The (free) propagator is defined as

〈φ(x)φ(y)〉 =

∫
Dφe−S0φ(x)φ(y)

Zfree
, (15.2)

where S0 =
∫
x

[
1
2∂aφ∂aφ+ 1

2m
2φ2
]

and Zfree =
∫
Dφe−S0

The path integral is Gaussian, so the result will involve the inverse of
the operator ∂a∂a + m2; it is easier to express this inverse in
momentum space

paul.romatschke@colorado.edu Lecture 15 Fall 2020 3 / 13



The Free Propagator

Since S0 is quadratic in the field φ, we employ once again a
Fourier-transform (cf. (9.5)):

φ(x) =
T

V

∑
ωn,~k

e iωnτ+i~k·~x φ̃(ωn, ~k) (15.3)

For notational simplicity, I will introduce K =
(
ωn, ~k

)
as the

Euclidean 4-momentum

The free propagator then is

〈φ(x)φ(y)〉 =
1

β2V 2

∑
P,K

∫
Dφ̃e−S0 φ̃(P)φ̃(K )e iP·x+iK ·y

Zfree
(15.4)
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The Free Propagator

The action in Fourier-space is (cf. (9.6))

S0 =
1

2βV

∑
K

(
K 2 + m2

)
|φ̃(K )|2 (15.5)

Recalling from lecture 13 that the Gaussian integral∫
dve−

1
2
viAijvj vmvn is vanishing whenever m 6= n, this implies that the

propagator is only non-vanishing whenever φ̃(P)φ̃(K ) = |φ̃(K )|2

Since φ̃(P) = φ̃∗(−P) because of periodic boundary conditions this
implies P + K = 0 for a non-vanishing propagator
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The Free Propagator

One therefore has∫
Dφ̃e−

1
2βV

∑
Q(Q2+m2)|φ̃(Q)|2

φ̃(P)φ̃(K ) = Zfree ×
βV δP,−K
K 2 + m2

, (15.6)

where δi ,j denotes the Kronecker-delta

The free propagator therefore becomes

〈φ(x)φ(y)〉 =
1

βV

∑
K

e iK ·(y−x)

K 2 + m2
=

1

βV

∑
K

e iK ·(x−y)

K 2 + m2
, (15.7)

where the last identity follows from
∑

K =
∑
−K
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The Free Propagator

The propagator 〈φ(x)φ(y)〉 only depends on the difference x − y ; this
is a consequence of translational invariance of the operator � + m2

In the large volume limit V →∞, the sum over wave-numbers
becomes an integral:

〈φ(x)φ(y)〉 = T
∑
ωn

∫
dDk

(2π)D
e iK ·(x−y)

K 2 + m2
= Gfree(x − y) , (15.8)

where Gfree(X ) is a new notation for the free propagator

In the zero-temperature limit, we have by analogy

lim
T→0

Gfree(x − y) =

∫
dD+1K

(2π)D+1

e iK ·(x−y)

K 2 + m2
(15.9)
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Perturbative Pressure Correction

We now have all the tools in place to calculate the perturbative
pressure (15.1)

Eq. (15.8) leads to

〈φ(x)φ(x)〉 = Gfree(0) = T
∑
ωn

∫
dDk

(2π)D
1

K 2 + m2
(15.10)

There are techniques to calculate Gfree(0) directly, but we will use a
trick
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Perturbative Pressure Correction

Noting that
1

K 2 + m2
=

∂

∂m2
ln
(
K 2 + m2

)
(15.11)

we have

Gfree(0) =
∂

∂m2
T
∑
ωn

∫
k

ln
(
ω2
n + k2 + m2

)
. (15.12)

But from lectures 6 and 9, we had (cf. (6.18), (9.10))

Zfree =
∏
~k

T

Ek

∞∏
n=1

ω2
n

ω2
n + E 2

k

(15.13)

so that

lnZfree = −1

2

∑
~k

∞∑
n=−∞

ln(ω2
n + k2 + m2) + m− indep. (15.14)
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Perturbative Pressure Correction

Therefore

Gfree(0) = −2
∂

∂m2
pfree (15.15)

Using the result (11.16) for pfree that we calculated in lecture 11 in
dimensional regularization, we therefore find

Gfree(0) = − m2

16π2

[
1

ε
+ ln

(
µ̄2e

1
2

m2

)]
+ IB(T ,m) . (15.16)

where

IB(T ,m) ≡ 2
∂

∂m2
JB(T ,m) =

∫
dDk

(2π)D
1

Ek

1

eβEk − 1
(15.17)
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Perturbative Pressure Correction

In the limit x → 0, the free propagator Gfree(x) diverges

Because small distance corresponds to high frequency, this is again an
example for a UV-divergence

For now, note that the divergence is absent for m = 0 where for D=3

lim
m→0

Gfree(0) = IB(T , 0) =

∫
d3k

(2π)3
1

k

1

eβk − 1
=

T 2ζ(2)

2π2
(15.18)

Therefore, for a massless scalar field in 3+1 dimensions with φ4

interaction we have

p(1) = pfree − 3λG 2
free(0) =

π2T 4

90
− λT

4

48
(15.19)
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Free vs. Full Propagator

In perturbation theory, we consider expectation values w.r.t. the free
action S0

That is how we defined the free propagator (15.2)

However, in the full QFT, we can also consider the two-point function

G (x) ≡
∫
Dφe−S0−SIφ(x)φ(0)

Z
(15.20)

This is referred to as the full (or resummed) propagator, because it
corresponds to an infinite number of terms in perturbation theory:

G (x) =
∞∑
n=0

1

n!

∫
Dφe−S0φ(x)φ(0)(−SI )n

Z
= Gfree−〈φ(x)φ(0)SI 〉conn.+. . .

(15.21)
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Free vs. Full Propagator

Similar to the pressure, we can calculate approximations to the full
propagator through perturbation theory

The perturbative series for the propagator can be written in terms of
(connected) Feynman diagrams with two “external” legs

Some of these infinitely many diagrams have a simple enough
structure that we can calculate all of these

Resumming the infinite series of diagrams that are easy to calculate,
we will get an approximation for the full propagator

This approach (“resummation”) is aiming for non-perturbative results
and (depending on the variation used) can be quite successful
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