Propagator in Scalar Field Theory II

paul.romatschke@colorado.edu

Fall 2020

Review

• In lecture 15, we introduced the free propagator as

$$G_{\text{free}}(x) = \frac{\int \mathcal{D}\phi e^{-S_0} \phi(x) \phi(0)}{Z_{\text{free}}}$$
(16.1)

Let us concentrate on zero-temperature first. In Eq. (15.9) we found

$$\lim_{T \to 0} G_{\text{free}}(x) = \int_{K} \frac{e^{iK \cdot x}}{K^2 + m^2}$$
 (16.2)

• In this lecture, we will discuss and interpret the free propagator result

Momentum Space Propagator

- Eq. (16.2) is in the form of a Fourier-transform
- The free propagator in *momentum space* is therefore

$$\tilde{G}_{\text{free}}(K) = \frac{1}{K^2 + m^2},$$
 (16.3)

where $K^2=\omega_n^2+\vec{k}^2$ and $\omega_n=2\pi nT$ are the Matsubara frequencies with $n=0,\pm 1,\pm 2,\ldots$

• K^2 has a Lorentz-invariant form if we write

$$K^2 = -(i\omega_n)^2 + \vec{k}^2. {16.4}$$

• We may try to perform an analytic continuation to Minkowski 4-momentum $k^\mu=\left(k^0,\vec{k}\,\right)$

Analytic Continuation

• We will analytically continue the (discrete) Matsubara frequencies ω_n to real momenta k^0 as

$$i\omega_n \to k^0 + i0^+ \,, \tag{16.5}$$

where 0^+ denotes a small regulator that is taken to zero at the end

• In the case of the propagator, this prescription leads to the *retarded Green's function* (cf. 1701.01554, chapter 8):

$$\tilde{G}_{R,free}(k^{0}, \vec{k}) = \tilde{G}_{free}(-ik^{0} + 0^{+}, \vec{k}),
= \frac{1}{-(k^{0} + i0^{+})^{2} + \vec{k}^{2} + m^{2}},
= \frac{1}{k_{\mu}k^{\mu} + m^{2} - i0^{+}sign(k^{0})}.$$
(16.6)

Analytic Continuation

This result can further be rewritten as

$$\begin{split} \tilde{G}_{\mathrm{R,free}}(k^{0}, \vec{k}) &= \mathbb{P}\left[\frac{1}{k_{\mu}k^{\mu} + m^{2}}\right] + \frac{i0^{+}\mathrm{sign}(k^{0})}{(k_{\mu}k^{\mu} + m^{2})^{2} + 0^{+2}}, \\ &= \mathbb{P}\left[\frac{1}{k_{\mu}k^{\mu} + m^{2}}\right] + \frac{i\pi}{2E_{k}}\left[\delta(k^{0} - E_{k}) - \delta(k^{0} + E_{k})\right], \end{split}$$

where $E_k^2=m^2+ec{k}^2$, $\mathbb P$ denotes the principal value and the representation

$$\frac{0^+}{x^2 + (0^+)^2} \to \pi \delta(x), \qquad (16.7)$$

for the Dirac-delta function has been used

Quasi-Particle Interpretation

- The real and imaginary part of the retarded Green's function are not independent, they are related by a generalization of the optical theorem
- Let us concentrate on the imaginary part, which we call spectral function:

$$\tilde{\rho}_{\text{free}}(k^0, \vec{k}) = \text{Im}\,\tilde{G}_{\text{R,free}}(k^0, \vec{k}) = \frac{\pi}{2E_k} \left[\delta(k^0 - E_k) - \delta(k^0 + E_k) \right] \,. \tag{16.8}$$

- ullet The spectral function is sharply peaked at energies $k^0=\pm E_k$
- While we have been doing QFT, one of these looks just like a classical particle with localized energy $k^0 = E_k$; we will call it a "quasiparticle"
- The other is stranger: taken at face value, it's a particle with *negative* energy; we will call it an *anti*-quasiparticle

Quasiparticle Dispersion Relations

- The quasi-particle structure of the spectral function suggests that the relevant excitations in free quantum field theory are particle-like
- The quasi-particle and its anti-particle in free-field theory fulfill

$$(k^0)^2 = k^2 + m^2, (16.9)$$

which we call a dispersion relation

- The dispersion relation is often measurable in practice, and can be used to infer properties of quasiparticles
- In particular, the dispersion relation (16.9) implies that the quasiparticles have mass m
- Also, since (16.9) does not have any imaginary part, the quasi-particle lifetime is infinite they are unconditionally stable in free field theory