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Review

@ In lecture 15, we introduced the free propagator as

_ [ De%0¢(x)(0)
Zfree

Gfree(x) (161)

@ Let us concentrate on zero-temperature first. In Eq. (15.9) we found

eiK-X
lim Greo(x) = | o 16.2
Tlmo Giree () /K K2 4+ m? (16.2)

@ In this lecture, we will discuss and interpret the free propagator result
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Momentum Space Propagator

e Eq. (16.2) is in the form of a Fourier-transform
@ The free propagator in momentum space is therefore

1

éfree(K) = m )

(16.3)

where K2 = w2 4 k? and w, = 2xnT are the Matsubara frequencies
with n=0,£1,£2,...

@ K2 has a Lorentz-invariant form if we write

K2 = —(iwp)? + k2. (16.4)

@ We may try to perform an analytic continuation to Minkowski
4-momentum k* = (ko, E)

paul.romatschke@colorado.edu Lecture 16 Fall 2020 3/7



-
Analytic Continuation

e We will analytically continue the (discrete) Matsubara frequencies wy,
to real momenta k° as

iw, — kO + 0T, (16.5)

where 0T denotes a small regulator that is taken to zero at the end

@ In the case of the propagator, this prescription leads to the retarded
Green's function (cf. 1701.01554, chapter 8):

CN';R,free(koal_() = Gfree(*ikOJFO-i_a/_(’),
1
—(KO +i0+)2 + k2 4+ m2’
1

= . 16.
k,kt + m? — j0+sign(kO) (16.6)
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Analytic Continuation

This result can further be rewritten as

1 i0Fsign(k°)
k, kt + m? (kykt + m?)2 40127

é.R,free(koa/_(») = IP)|:

- L T s 0 Y s(kO
= P [kuk“+m2] + 2E, [(5(/( Ek) (S(k -+ Ek)] ,

where E,% = m? + k2, P denotes the principal value and the representation

0+

e (A OF (16.7)

for the Dirac-delta function has been used
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Quasi-Particle Interpretation

@ The real and imaginary part of the retarded Green's function are not
independent, they are related by a generalization of the optical
theorem

@ Let us concentrate on the imaginary part, which we call spectral
function:

Prrcc(K°, K) = TmGR free (K%, k) = SE [6(k® — Ex) — 6(K° + Ex)] -
k
(16.8)

@ The spectral function is sharply peaked at energies kO = +E,

@ While we have been doing QFT, one of these looks just like a classical
particle with localized energy k° = E.; we will call it a “quasiparticle”

@ The other is stranger: taken at face value, it's a particle with negative
energy; we will call it an anti-quasiparticle
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Quasiparticle Dispersion Relations

@ The quasi-particle structure of the spectral function suggests that the
relevant excitations in free quantum field theory are particle-like

@ The quasi-particle and its anti-particle in free-field theory fulfill
(k%) = k> + m?, (16.9)

which we call a dispersion relation

@ The dispersion relation is often measurable in practice, and can be
used to infer properties of quasiparticles

@ In particular, the dispersion relation (16.9) implies that the
quasiparticles have mass m

@ Also, since (16.9) does not have any imaginary part, the quasi-particle
lifetime is infinite — they are unconditionally stable in free field theory
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