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Review

In lecture 15, we introduced the free propagator as

Gfree(x) =

∫
Dφe−S0φ(x)φ(0)

Zfree
(16.1)

Let us concentrate on zero-temperature first. In Eq. (15.9) we found

lim
T→0

Gfree(x) =

∫
K

e iK ·x

K 2 + m2
(16.2)

In this lecture, we will discuss and interpret the free propagator result
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Momentum Space Propagator

Eq. (16.2) is in the form of a Fourier-transform

The free propagator in momentum space is therefore

G̃free(K ) =
1

K 2 + m2
, (16.3)

where K 2 = ω2
n + ~k2 and ωn = 2πnT are the Matsubara frequencies

with n = 0,±1,±2, . . .

K 2 has a Lorentz-invariant form if we write

K 2 = −(iωn)2 + ~k2 . (16.4)

We may try to perform an analytic continuation to Minkowski

4-momentum kµ =
(
k0, ~k

)
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Analytic Continuation

We will analytically continue the (discrete) Matsubara frequencies ωn

to real momenta k0 as

iωn → k0 + i0+ , (16.5)

where 0+ denotes a small regulator that is taken to zero at the end

In the case of the propagator, this prescription leads to the retarded
Green’s function (cf. 1701.01554, chapter 8):

G̃R,free(k0, ~k) = G̃free(−ik0 + 0+, ~k) ,

=
1

−(k0 + i0+)2 + ~k2 + m2
,

=
1

kµkµ + m2 − i0+sign(k0)
. (16.6)
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Analytic Continuation

This result can further be rewritten as

G̃R,free(k0, ~k) = P
[

1

kµkµ + m2

]
+

i0+sign(k0)

(kµkµ + m2)2 + 0+2
,

= P
[

1

kµkµ + m2

]
+

iπ

2Ek

[
δ(k0 − Ek)− δ(k0 + Ek)

]
,

where E 2
k = m2 + ~k2, P denotes the principal value and the representation

0+

x2 + (0+)2
→ πδ(x) , (16.7)

for the Dirac-delta function has been used
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Quasi-Particle Interpretation

The real and imaginary part of the retarded Green’s function are not
independent, they are related by a generalization of the optical
theorem

Let us concentrate on the imaginary part, which we call spectral
function:

ρ̃free(k0, ~k) = ImG̃R,free(k0, ~k) =
π

2Ek

[
δ(k0 − Ek)− δ(k0 + Ek)

]
.

(16.8)

The spectral function is sharply peaked at energies k0 = ±Ek

While we have been doing QFT, one of these looks just like a classical
particle with localized energy k0 = Ek ; we will call it a “quasiparticle”

The other is stranger: taken at face value, it’s a particle with negative
energy; we will call it an anti-quasiparticle
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Quasiparticle Dispersion Relations

The quasi-particle structure of the spectral function suggests that the
relevant excitations in free quantum field theory are particle-like

The quasi-particle and its anti-particle in free-field theory fulfill

(k0)2 = k2 + m2 , (16.9)

which we call a dispersion relation

The dispersion relation is often measurable in practice, and can be
used to infer properties of quasiparticles

In particular, the dispersion relation (16.9) implies that the
quasiparticles have mass m

Also, since (16.9) does not have any imaginary part, the quasi-particle
lifetime is infinite — they are unconditionally stable in free field theory
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