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Review

@ In lecture 15, we introduced the full propagator

e~ 9051 p(x
Gy = 122 : 9()9(0) ar1)

@ To first order perturbative approximation, the full propagator is
G(l) = Gfree - <¢(X)¢(O)SI> : (172)
and the partition function is

Z(1) = Ziveo — (S1) (17.3)

@ In this lecture, we will discuss the perturbative propagator as well as
resummations thereof
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Perturbative Correction

@ The first-order correction term is

(B(x)$(0)S/) :)\/ (17.4)
y

@ Using Wick’'s theorem and only keeping connected diagrams, this
becomes

(0(x)9(0)S) = 12)\/<¢(X)¢(y)><¢(y)¢>(0)><¢2(y)>,
y

 12Gee(0) / Gireo(X — ¥)Giree(y)  (17.5)
y
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Perturbative Correction

e Using (16.2), as well asf e (P=K) = §(P — K) we have

eiK-x
im (606008 = 1261(0) [ o (176)

T—0 k (K2 4+ m?)?

@ We therefore find

lim G S 12AGhe(0 e
i, Gl) = e~ 126l [ e

iK-x free
= - ]. .
/Ke <K2+m2 (K2+m2)2> (17.7)
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Perturbative Correction

@ Perturbative result in momentum space:

. 1 122 Ggreo (0)
Gy (K) = K2+ m?2  (KZ+m2)?2’

(17.8)

@ We have calculated Ggee(0) in lecture 15 in dim-reg, cf. (15.16)

e Eq. (17.8) has a simple structure; it looks like the start of a
geometric series

@ By explicitly considering @(2), @(3), ... one indeed finds that
G(k) = 1
K24+ m? + 12AGpeo(0)

+0O(N\?), (17.9)

which is valid up to 2°¢ order in perturbation theory
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-
Self-energy

o If we allow for an arbitary function F1(K), we can represent the full
propagator in momentum space as

~ 1
G(K) = = . (17.10)
K? + m? + N(K)
@ To lowest order in perturbation theory, we have
M(K) = 12AGee(0) (17.11)

e.g. just a constant
@ We call 1 the self-energy of the scalar field ¢

@ The self-energy is a central object in quantum field theory, and
contains an enourmous amount of information
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Perturbative renormalization of the Self-Energy

@ Using (15.16) for Ggee(0), the perturbative self-energy to first order is
~ 3m?) |1 ﬁ2e%
Moy =~ 472 [5 - In ( m?2

@ The result is divergent when letting e — 0

+ 12M(T, m) (17.12)

o However, note that I appears in the propagator only as m? + I

o Next, realize that m? is just a parameter in the Lagrangian; we may
add a counterterm similar to our renormalization program for the
cosmological constant:

m* = mlyo 4 om? . (17.13)
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Perturbative renormalization of the Self-Energy

e We can renormalize m? + ﬁ(l) by choosing a divergent
mass-counterterm; in MS:
3m3 A\

sm? = 4"711” +0(\?) (17.14)
7T

@ The resulting combination is finite to leading order in perturbation

theory
~ 3)\m h _2e%
m? 4 Flgy = My — — 5" In (“ 5 |+ 12M5(T, mpys)
7T My S
phy
= Ml + 5+ 0(V?). (17.15)

o Note: there are remaining divergencies starting at O(\?), which will
have to be cancelled by counterterms of the same order
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Quasi-Particle Mass

@ In lecture 16, we found that the pole of the analytically continued free
propagator corresponded to the mass of the quasiparticle

@ Let us do this exercise for the full propagator (17.10)

@ To first order in perturbation theory, when letting K? — —kg + k2 we
have a propagator pole located at

kg = K>+ m2 + A (17.16)

@ This means the quasi-particle mass is no longer given by the
parameter m in the Lagrangian; instead, the effective mass of the
quasi-particle is

1
3Ampn [ilez 6
meff(T) — Mphys = 87Tp2 “hn <m2h * Mphys /B(T’ mphyS)
phys
(17.17)
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Quasi-Particle Mass

o At first glance, it seems that the effective mass is temperature and
renormalization scale dependent

@ At zero temperature, we have Ig( T, mphys) = 0 and hence

3Am? i2e7
m2g(T = 0) = m2,  — —Ps |, (’”‘ e ) (17.18)

@ However, mgﬁ is a measurable quantity, it cannot depend on [

@ The only way out is that the parameter my,,ys depends on fi, so that

2
_Omig _

. 17.1
oo =0 (17.19)
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Quasi-Particle Mass

o Putting mphys — Mphys(f2), (17.19) implies

om?, (ji i2e~3 3axm?, ([
0= IEM [1 _3 In (“ez)] _ M (17.20)

2 2
M hys 2T

@ In perturbation theory, we can maintain (17.19) if

ﬁamﬁhys(ﬁ) _ 3)‘m§)hys(:a)

o0 ot O(\?) (17.21)

@ We find that in order for the measurable quasi-particle mass to be
independent from an arbitrary choice fi, the Lagrangian parameter
Mpnys has to depend on fi; in QFT lingo, the mass “runs”
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Quasiparticle Mass

@ A special case is mppys = 0

@ In this case, using (15.18), we have

meir(T) = /12Mp(T,0) = VAT (17.22)

@ The effective quasi-particle mass is independent of fi, but depends on
temperature

@ We call this the in-medium mass, because even if the quasi-particle is
massless at T = 0, it acquires an effective mass through interactions
with the thermal medium

@ Note that in-medium masses are generically unavoidable for any value
of Mphys
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