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Review

In lecture 15, we introduced the full propagator

G (x) =

∫
Dφe−S0−SIφ(x)φ(0)

Z
. (17.1)

To first order perturbative approximation, the full propagator is

G(1) = Gfree − 〈φ(x)φ(0)SI 〉 . (17.2)

and the partition function is

Z(1) = Zfree − 〈SI 〉 . (17.3)

In this lecture, we will discuss the perturbative propagator as well as
resummations thereof
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Perturbative Correction

The first-order correction term is

〈φ(x)φ(0)SI 〉 = λ

∫
y
〈φ(x)φ(0)φ4(y)〉 (17.4)

Using Wick’s theorem and only keeping connected diagrams, this
becomes

〈φ(x)φ(0)SI 〉 = 12λ

∫
y
〈φ(x)φ(y)〉〈φ(y)φ(0)〉〈φ2(y)〉 ,

= 12λGfree(0)

∫
y

Gfree(x − y)Gfree(y) (17.5)
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Perturbative Correction

Using (16.2), as well as
∫
y e iy ·(P−K) = δ(P − K ) we have

lim
T→0
〈φ(x)φ(0)SI 〉 = 12λGfree(0)

∫
K

e iK ·x

(K 2 + m2)2
(17.6)

We therefore find

lim
T→0

G(1)(x) =

∫
K

e iK ·x

K 2 + m2
− 12λGfree(0)

∫
K

e iK ·x

(K 2 + m2)2
,

=

∫
K

e iK ·x
(

1

K 2 + m2
− 12λGfree(0)

(K 2 + m2)2

)
(17.7)
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Perturbative Correction

Perturbative result in momentum space:

G̃(1)(K ) =
1

K 2 + m2
− 12λGfree(0)

(K 2 + m2)2
. (17.8)

We have calculated Gfree(0) in lecture 15 in dim-reg, cf. (15.16)

Eq. (17.8) has a simple structure; it looks like the start of a
geometric series

By explicitly considering G̃(2), G̃(3), . . . one indeed finds that

G̃ (K ) =
1

K 2 + m2 + 12λGfree(0)
+O(λ2) , (17.9)

which is valid up to 2nd order in perturbation theory
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Self-energy

If we allow for an arbitary function Π̃(K ), we can represent the full
propagator in momentum space as

G̃ (K ) =
1

K 2 + m2 + Π̃(K )
. (17.10)

To lowest order in perturbation theory, we have

Π̃(K ) = 12λGfree(0) , (17.11)

e.g. just a constant

We call Π the self-energy of the scalar field φ

The self-energy is a central object in quantum field theory, and
contains an enourmous amount of information
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Perturbative renormalization of the Self-Energy

Using (15.16) for Gfree(0), the perturbative self-energy to first order is

Π̃(1) = −3m2λ

4π2

[
1

ε
+ ln

(
µ̄2e

1
2

m2

)]
+ 12λIB(T ,m) (17.12)

The result is divergent when letting ε→ 0

However, note that Π̃ appears in the propagator only as m2 + Π̃

Next, realize that m2 is just a parameter in the Lagrangian; we may
add a counterterm similar to our renormalization program for the
cosmological constant:

m2 → m2
phys + δm2 . (17.13)
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Perturbative renormalization of the Self-Energy

We can renormalize m2 + Π̃(1) by choosing a divergent

mass-counterterm; in MS:

δm2 =
3m2

physλ

4π2ε
+O(λ2) (17.14)

The resulting combination is finite to leading order in perturbation
theory

m2 + Π̃(1) = m2
phys −

3λm2
phys

4π2
ln

(
µ̄2e

1
2

m2
phys

)
+ 12λIB(T ,mphys) ,

= m2
phys + Π̃ren

(1) +O(λ2) . (17.15)

Note: there are remaining divergencies starting at O(λ2), which will
have to be cancelled by counterterms of the same order
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Quasi-Particle Mass

In lecture 16, we found that the pole of the analytically continued free
propagator corresponded to the mass of the quasiparticle

Let us do this exercise for the full propagator (17.10)

To first order in perturbation theory, when letting K 2 → −k2
0 + ~k2 we

have a propagator pole located at

k2
0 = k2 + m2

phys + Π̃ren
(1) . (17.16)

This means the quasi-particle mass is no longer given by the
parameter m in the Lagrangian; instead, the effective mass of the
quasi-particle is

meff(T ) = mphys −
3λmphys

8π2
ln

(
µ̄2e

1
2

m2
phys

)
+

6λ

mphys
IB(T ,mphys)

(17.17)
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Quasi-Particle Mass

At first glance, it seems that the effective mass is temperature and
renormalization scale dependent

At zero temperature, we have IB(T ,mphys) = 0 and hence

m2
eff(T = 0) = m2

phys −
3λm2

phys

4π2
ln

(
µ̄2e

1
2

m2
phys

)
(17.18)

However, m2
eff is a measurable quantity, it cannot depend on µ̄

The only way out is that the parameter mphys depends on µ̄, so that

µ̄
∂m2

eff

∂µ̄
= 0 . (17.19)
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Quasi-Particle Mass

Putting mphys → mphys(µ̄), (17.19) implies

0 = µ̄
∂m2

phys(µ̄)

∂µ̄

[
1− 3λ

4π2
ln

(
µ̄2e−

1
2

m2
phys

)]
−

3λm2
phys(µ̄)

2π2
(17.20)

In perturbation theory, we can maintain (17.19) if

µ̄
∂m2

phys(µ̄)

∂µ̄
=

3λm2
phys(µ̄)

2π2
+O(λ2) (17.21)

We find that in order for the measurable quasi-particle mass to be
independent from an arbitrary choice µ̄, the Lagrangian parameter
mphys has to depend on µ̄; in QFT lingo, the mass “runs”
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Quasiparticle Mass

A special case is mphys = 0

In this case, using (15.18), we have

meff(T ) =
√

12λIB(T , 0) =
√
λT (17.22)

The effective quasi-particle mass is independent of µ̄, but depends on
temperature

We call this the in-medium mass, because even if the quasi-particle is
massless at T = 0, it acquires an effective mass through interactions
with the thermal medium

Note that in-medium masses are generically unavoidable for any value
of mphys
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