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Review

@ In lecture 18, we considered QFT with a scalar field potential

V(6) = —%m2¢2 v (19.1)

@ Using the mean-field approximation, we found hints that with this
potential, the theory contains a thermal phase transition

@ In lecture 18, we found that the phase was controlled by the
minimum of the effective potential Vg

7 — /dqzeﬁVVeff(@_ﬁ)7 (19.2)

where in the mean-field approximation V,g(¢) = V()
@ In this lecture, we will put our study of this potential on more
rigorous footing
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-
Beyond Mean Field

@ We again start by decomposing the scalar field into a constant plus
fluctuations:

$(x) =&+ ¢'(x). (19.3)
where by construction [ ¢'(x) = 0.
@ Using this decomposition, the potential (19.1) becomes

Vig+ ¢ = Vgl + (~m?6 +4r6°) ¢, (19.4)
+% (—m2+12)\<52) ¢/2+4)\&¢l3+/\¢/4,

@ Since the potential enters the action as [ V(¢), the term linear in ¢’
drops out
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-
Beyond Mean Field

o After the decomposition, we have for the partition function

z= / dgePVV() / Dl e SHA-SHa (19.5)
where
1 i
31 = 5 | [0u9u) + (~m +12032) 7] (19.6)
and
S/[¢] = / [4Xp” + Ng™] . (19.7)

@ Introducing the “effective mass” squared
2 7V 2 72
mig(@) = —m* 4+ 12X¢°, (19.8)
the partition function (19.5) can be studied using perturbation theory
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-
Beyond Mean Field

o If ¢ =0, the calculation for the fluctuations reverts to the standard
perturbation theory; we refer to this case as “symmetric phase”

o If ¢ # 0, the calculation is modified because of the presence of the
non-zero expectation value for the field;we refer to this as the “broken
phase”

@ The theory will tell us which phase is realized for which temperature

paul.romatschke@colorado.edu Lecture 19 Fall 2020 5/13



-
Beyond Mean Field: Perturbation Theory

@ Let us now calculate the effect from fluctuations on the effective
potential in perturbation theory

@ To leading order in perturbation theory, we ignore S; and thus have to

calculate i
/ D¢ e 0l?] (19.9)

o Since S)[#] is quadratic in ¢/, we can re-use our result from free field
theory in lecture 9

@ The only modification is that now the mass meg($) depends on an
external parameter ¢
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-
Beyond Mean Field: Perturbation Theory

e From equations (9.12), (10.2) we have

/D¢’e56[¢_’] _ 7

(gf)kD [Ek+2T|n(1_e75Ek )] — eﬁ\/Pfree(T)

i (19.10)
where EZ = k? + m%;(9).

@ We have calculated the renormalized free pressure in MS in lecture 11

e Using (11.16), to leading order in perturbation theory, the
renormalized effective potential in (19.2) is given by

me (6 I e% -
wii0(0) = V() - gf;f) In( - (E)‘>+JB(T,meg(¢)) (19.11)
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-
Beyond Mean Field: Perturbation Theory

o At zero temperature Jg = 0; choosing ji®> = m?, the perturbative
effective potential becomes

m*s (o m?e3
() = V(@) - "D (|mzﬁf@|) (19.12)

@ For illustration, we can compare this to the mean-field approximation

Vint(0) = V(@) for A =1
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Low-temperature Effective Potential
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At low temperature, there is not much change from the mean-field result
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-
Beyond Mean Field: Perturbation Theory

@ Next let's consider high temperature T > m
@ We need an expansion of Jg(T, m) in powers of m

@ The leading order term was given in (11.5); the next-to-leading order
term can be gleaned from Eqns. (15.17), (15.18); we find

7r2 T4 T2 m2

Jo(T,m) = ==g5=+ 3,

(19.13)

@ ¢-independent terms do not influence the shape of the potential;
ignoring those, (19.13) leads to

ot (6) =

642

l\)\r—l

@ Let us again visualize this result for f = m, A =1
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-
High-temperature Effective Potential
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At high temperature, the symmetry is restored!
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Symmetry restoration at high temperature

o At high temperature, the quadratic term in V,g($) becomes positive
because A T2 dominates over —m?

@ As a consequence, the minimum of the potential at high temperature
is located at ¢ =0

@ Therefore, in the high temperature phase, the field expectation value
(¢(x))tun = 0, and we are in the symmetric phase

@ We can estimate the location of the phase transition between
low-temperature and high-temperature phase in perturbation theory
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Estimate of the transition temperature

@ To estimate the transition temperature in perturbation theory, start

with the derivative of the potential d eﬁ(d’) with 72 = m?
@ Since for the symmetric phase ¢ = 0, we can evaluate
dVeg (¢ A
dVer ()| _ ( 1+3> +AT2. (19.15)

@ Since ¢ = 0 must be a minimum of the potential, this leads to

1 3
2_ 2 2
T2=m <A 47T2> (19.16)

@ Since we are doing perturbation theory for A < 1, our estimate is
m
Tc=—. 19.17
VAN ( )
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