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Review

In lecture 18, we considered QFT with a scalar field potential

V (φ) = −1

2
m2φ2 + λφ4 . (19.1)

Using the mean-field approximation, we found hints that with this
potential, the theory contains a thermal phase transition

In lecture 18, we found that the phase was controlled by the
minimum of the effective potential Veff

Z =

∫
d φ̄e−βVVeff(φ̄) , (19.2)

where in the mean-field approximation Veff(φ̄) = V (φ̄)

In this lecture, we will put our study of this potential on more
rigorous footing
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Beyond Mean Field

We again start by decomposing the scalar field into a constant plus
fluctuations:

φ(x) = φ̄+ φ′(x) . (19.3)

where by construction
∫
x φ
′(x) = 0.

Using this decomposition, the potential (19.1) becomes

V [φ̄+ φ′] = V [φ̄] +
(
−m2φ̄+ 4λφ̄3

)
φ′ , (19.4)

+
1

2

(
−m2 + 12λφ̄2

)
φ′2 + 4λφ̄φ′3 + λφ′4 ,

Since the potential enters the action as
∫
x V (φ), the term linear in φ′

drops out
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Beyond Mean Field

After the decomposition, we have for the partition function

Z =

∫
d φ̄e−βVV (φ̄)

∫
Dφ′e−S ′0[φ̄]−S ′I [φ̄] , (19.5)

where

S ′0[φ̄] =
1

2

∫
x

[
∂aφ
′∂aφ

′ +
(
−m2 + 12λφ̄2

)
φ′2
]

(19.6)

and

S ′I [φ̄] =

∫
x

[
4λφ̄φ′3 + λφ′4

]
. (19.7)

Introducing the “effective mass” squared

m2
eff(φ̄) = −m2 + 12λφ̄2 , (19.8)

the partition function (19.5) can be studied using perturbation theory
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Beyond Mean Field

If φ̄ = 0, the calculation for the fluctuations reverts to the standard
perturbation theory; we refer to this case as “symmetric phase”

If φ̄ 6= 0, the calculation is modified because of the presence of the
non-zero expectation value for the field;we refer to this as the “broken
phase”

The theory will tell us which phase is realized for which temperature
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Beyond Mean Field: Perturbation Theory

Let us now calculate the effect from fluctuations on the effective
potential in perturbation theory

To leading order in perturbation theory, we ignore SI and thus have to
calculate ∫

Dφ′e−S ′0[φ̄] . (19.9)

Since S ′0[φ̄] is quadratic in φ′, we can re-use our result from free field
theory in lecture 9

The only modification is that now the mass meff(φ̄) depends on an
external parameter φ̄
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Beyond Mean Field: Perturbation Theory

From equations (9.12), (10.2) we have∫
Dφ′e−S ′0[φ̄] = e

−βV
2

∫
dDk

(2π)D
[Ek+2T ln(1−e−βEk )]

= eβVpfree(T ) ,

(19.10)
where E 2

k = ~k2 + m2
eff(φ̄).

We have calculated the renormalized free pressure in MS in lecture 11

Using (11.16), to leading order in perturbation theory, the
renormalized effective potential in (19.2) is given by

V ren
eff,0(φ̄) = V (φ̄)−

m4
eff(φ̄)

64π2
ln

(
µ̄2e

3
2

|m2
eff(φ̄)|

)
+JB(T ,meff(φ̄)) (19.11)
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Beyond Mean Field: Perturbation Theory

At zero temperature JB = 0; choosing µ̄2 = m2, the perturbative
effective potential becomes

V ren
eff,0(φ̄) = V (φ̄)−

m4
eff(φ̄)

64π2
ln

(
m2e

3
2

|m2
eff(φ̄)|

)
(19.12)

For illustration, we can compare this to the mean-field approximation
Vmf(φ̄) = V (φ̄) for λ = 1
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Low-temperature Effective Potential

At low temperature, there is not much change from the mean-field result
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Beyond Mean Field: Perturbation Theory

Next let’s consider high temperature T � m

We need an expansion of JB(T ,m) in powers of m

The leading order term was given in (11.5); the next-to-leading order
term can be gleaned from Eqns. (15.17), (15.18); we find

JB(T ,m) = −π
2T 4

90
+

T 2m2

24
+ . . . (19.13)

φ̄-independent terms do not influence the shape of the potential;
ignoring those, (19.13) leads to

V ren
eff,0(φ̄) =

1

2

(
−m2 + λT 2

)
φ̄2 + λφ̄4 −

m4
eff(φ̄)

64π2
ln

(
µ̄2e

3
2

|m2
eff(φ̄)|

)
(19.14)

Let us again visualize this result for µ̄ = m, λ = 1
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High-temperature Effective Potential

At high temperature, the symmetry is restored!
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Symmetry restoration at high temperature

At high temperature, the quadratic term in Veff(φ̄) becomes positive
because λT 2 dominates over −m2

As a consequence, the minimum of the potential at high temperature
is located at φ̄ = 0

Therefore, in the high temperature phase, the field expectation value
〈φ(x)〉full = 0, and we are in the symmetric phase

We can estimate the location of the phase transition between
low-temperature and high-temperature phase in perturbation theory
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Estimate of the transition temperature

To estimate the transition temperature in perturbation theory, start

with the derivative of the potential dVeff(φ̄)

dφ̄
with µ̄2 = m2

Since for the symmetric phase φ̄ = 0, we can evaluate

dVeff(φ̄)

d φ̄

∣∣∣∣
φ̄=0

= m2

(
−1 +

3λ

4π2

)
+ λT 2 . (19.15)

Since φ̄ = 0 must be a minimum of the potential, this leads to

T 2
c = m2

(
1

λ
− 3

4π2

)
(19.16)

Since we are doing perturbation theory for λ� 1, our estimate is

Tc =
m√
λ
. (19.17)
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