Application: Thermal Phase Transitions II

paul.romatschke@colorado.edu

Fall 2020

Review

• In lecture 18, we considered QFT with a scalar field potential

$$V(\phi) = -\frac{1}{2}m^2\phi^2 + \lambda\phi^4.$$
 (19.1)

- Using the mean-field approximation, we found hints that with this
 potential, the theory contains a thermal phase transition
- ullet In lecture 18, we found that the phase was controlled by the minimum of the effective potential $V_{
 m eff}$

$$Z = \int d\bar{\phi} e^{-\beta V V_{\text{eff}}(\bar{\phi})}, \qquad (19.2)$$

where in the mean-field approximation $V_{ ext{eff}}(ar{\phi}) = V(ar{\phi})$

 In this lecture, we will put our study of this potential on more rigorous footing

Beyond Mean Field

 We again start by decomposing the scalar field into a constant plus fluctuations:

$$\phi(x) = \bar{\phi} + \phi'(x). \tag{19.3}$$

where by construction $\int_{x} \phi'(x) = 0$.

• Using this decomposition, the potential (19.1) becomes

$$V[\bar{\phi} + \phi'] = V[\bar{\phi}] + (-m^2\bar{\phi} + 4\lambda\bar{\phi}^3) \phi', \qquad (19.4)$$
$$+ \frac{1}{2} (-m^2 + 12\lambda\bar{\phi}^2) \phi'^2 + 4\lambda\bar{\phi}\phi'^3 + \lambda\phi'^4,$$

• Since the potential enters the action as $\int_X V(\phi)$, the term linear in ϕ' drops out

Beyond Mean Field

• After the decomposition, we have for the partition function

$$Z = \int d\bar{\phi} e^{-\beta VV(\bar{\phi})} \int \mathcal{D}\phi' e^{-S_0'[\bar{\phi}] - S_I'[\bar{\phi}]}, \qquad (19.5)$$

where

$$S_0'[\bar{\phi}] = \frac{1}{2} \int_{\mathbf{x}} \left[\partial_{\mathbf{a}} \phi' \partial_{\mathbf{a}} \phi' + \left(-m^2 + 12\lambda \bar{\phi}^2 \right) \phi'^2 \right] \tag{19.6}$$

and

$$S_{l}'[\bar{\phi}] = \int_{x} \left[4\lambda \bar{\phi} \phi'^{3} + \lambda \phi'^{4} \right] . \tag{19.7}$$

Introducing the "effective mass" squared

$$m_{\text{eff}}^2(\bar{\phi}) = -m^2 + 12\lambda\bar{\phi}^2,$$
 (19.8)

the partition function (19.5) can be studied using perturbation theory

Beyond Mean Field

- If $\bar{\phi}=$ 0, the calculation for the fluctuations reverts to the standard perturbation theory; we refer to this case as "symmetric phase"
- If $\bar{\phi} \neq 0$, the calculation is modified because of the presence of the non-zero expectation value for the field;we refer to this as the "broken phase"
- The theory will tell us which phase is realized for which temperature

- Let us now calculate the effect from fluctuations on the effective potential in perturbation theory
- ullet To leading order in perturbation theory, we ignore S_I and thus have to calculate

$$\int \mathcal{D}\phi' e^{-S_0'[\bar{\phi}]}. \tag{19.9}$$

- Since $S_0'[\bar{\phi}]$ is quadratic in ϕ' , we can re-use our result from free field theory in lecture 9
- ullet The only modification is that now the mass $m_{
 m eff}(ar{\phi})$ depends on an external parameter $ar{\phi}$

• From equations (9.12), (10.2) we have

$$\int \mathcal{D}\phi' e^{-S_0'[\bar{\phi}]} = e^{-\frac{\beta V}{2} \int \frac{d^D k}{(2\pi)^D} \left[E_k + 2T \ln\left(1 - e^{-\beta E_k}\right) \right]} = e^{\beta V p_{\text{free}}(T)},$$

$$\text{(19.10)}$$
where $E_k^2 = \vec{k}^2 + m_{\text{eff}}^2(\bar{\phi}).$

- where $E_k^2 = \kappa^2 + m_{\text{eff}}^2(\phi)$.
- ullet We have calculated the renormalized free pressure in $\overline{\rm MS}$ in lecture 11
- Using (11.16), to leading order in perturbation theory, the renormalized effective potential in (19.2) is given by

$$V_{ ext{eff},0}^{ ext{ren}}(\bar{\phi}) = V(\bar{\phi}) - \frac{m_{ ext{eff}}^4(\bar{\phi})}{64\pi^2} \ln \left(\frac{\bar{\mu}^2 e^{\frac{3}{2}}}{|m_{ ext{eff}}^2(\bar{\phi})|} \right) + J_B(T, m_{ ext{eff}}(\bar{\phi}))$$
 (19.11)

• At zero temperature $J_B=0$; choosing $\bar{\mu}^2=m^2$, the perturbative effective potential becomes

$$V_{\rm eff,0}^{\rm ren}(\bar{\phi}) = V(\bar{\phi}) - \frac{m_{\rm eff}^4(\bar{\phi})}{64\pi^2} \ln \left(\frac{m^2 e^{\frac{3}{2}}}{|m_{\rm eff}^2(\bar{\phi})|} \right)$$
(19.12)

ullet For illustration, we can compare this to the mean-field approximation $V_{
m mf}(ar\phi)=V(ar\phi)$ for $\lambda=1$

Low-temperature Effective Potential

At low temperature, there is not much change from the mean-field result

- Next let's consider high temperature $T \gg m$
- We need an expansion of $J_B(T, m)$ in powers of m
- The leading order term was given in (11.5); the next-to-leading order term can be gleaned from Eqns. (15.17), (15.18); we find

$$J_B(T,m) = -\frac{\pi^2 T^4}{90} + \frac{T^2 m^2}{24} + \dots$$
 (19.13)

• $\bar{\phi}$ -independent terms do not influence the shape of the potential; ignoring those, (19.13) leads to

$$V_{\text{eff},0}^{\text{ren}}(\bar{\phi}) = \frac{1}{2} \left(-m^2 + \lambda T^2 \right) \bar{\phi}^2 + \lambda \bar{\phi}^4 - \frac{m_{\text{eff}}^4(\bar{\phi})}{64\pi^2} \ln \left(\frac{\bar{\mu}^2 e^{\frac{3}{2}}}{|m_{\text{eff}}^2(\bar{\phi})|} \right)$$
(19.14)

• Let us again visualize this result for $\bar{\mu}=m, \lambda=1$

High-temperature Effective Potential

At high temperature, the symmetry is restored!

Symmetry restoration at high temperature

- At high temperature, the quadratic term in $V_{\rm eff}(\bar{\phi})$ becomes positive because λT^2 dominates over $-m^2$
- \bullet As a consequence, the minimum of the potential at high temperature is located at $\bar{\phi}=0$
- Therefore, in the high temperature phase, the field expectation value $\langle \phi(x) \rangle_{\rm full} = 0$, and we are in the symmetric phase
- We can *estimate* the location of the phase transition between low-temperature and high-temperature phase in perturbation theory

Estimate of the transition temperature

- To estimate the transition temperature in perturbation theory, start with the derivative of the potential $\frac{dV_{\rm eff}(\bar{\phi})}{d\bar{\phi}}$ with $\bar{\mu}^2=m^2$
- ullet Since for the symmetric phase $ar{\phi}=0$, we can evaluate

$$\left. \frac{dV_{\text{eff}}(\bar{\phi})}{d\bar{\phi}} \right|_{\bar{\phi}=0} = m^2 \left(-1 + \frac{3\lambda}{4\pi^2} \right) + \lambda T^2. \tag{19.15}$$

ullet Since $ar{\phi}=0$ must be a minimum of the potential, this leads to

$$T_c^2 = m^2 \left(\frac{1}{\lambda} - \frac{3}{4\pi^2} \right) \tag{19.16}$$

• Since we are doing perturbation theory for $\lambda \ll 1$, our estimate is

$$T_c = \frac{m}{\sqrt{\lambda}} \,. \tag{19.17}$$