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Review

Divergencies in QFT require renormalization

Renormalized expressions generically involve arbitrary scale µ̄

Physical observables cannot depend on arbitrary scale, but parameters
in Lagrangian can

In lecture 17, independence of physical quasi-particle mass led us to

µ̄
∂m2

phys(µ̄)

∂µ̄
=

3λphys(µ̄)m2
phys(µ̄)

2π2
+O(λ2

phys) (21.1)

In lecture 20, independence of physical vertex led us to

µ̄
∂λphys(µ̄)

∂µ̄
=

3λ2
phys(µ̄)

16π2
+O(λ3

phys) (21.2)
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Renormalization Group

Eqns. (21.1), (21.2) represent the dependence of Lagrangian
parameters on the arbitrary scale µ̄

Since these imply that λphys,mphys change with µ we call λphys the
running coupling constant and mphys the running mass

It is customary to introduce the notation

β(λ) ≡ µ̄∂λ(µ̄)

∂µ̄
, γm(λ) ≡ µ̄∂ ln m2(µ̄)

∂µ̄
, (21.3)

the so-called β and γ functions
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Renormalization Group

Let us consider a physically measurable object such as the pressure in
QFT

When calculating the pressure in QFT, we typically encounter
divergencies, requiring renormalization

After renormalization, the pressure depends on parameters in the
Lagrangian, e.g.

pren = pren(µ̄, λphys(µ̄),mphys(µ̄)) (21.4)

However, since the pressure is a physical observable, choosing a
different scale µ̄→ µ̄′ must give the same pressure:

pren(µ̄, λphys(µ̄),mphys(µ̄)) = pren(µ̄′, λphys(µ̄
′),mphys(µ̄

′)) (21.5)
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Renormalization Group

Put differently, a physical observable is invariant under changes of the
renormalization scale

We call this “renormalization group invariant”

For the case of the pressure, renormalization group invariance implies

µ̄
dpren(µ̄, λphys(µ̄),mphys(µ̄))

d µ̄
= 0 (21.6)

Here d
dµ̄ is a total derivative

We can use the chain rule to split it up:[
µ̄
∂

∂µ̄
+ β

∂

∂λphys
+ γmm2

phys

∂

∂m2
phys

]
pren(µ̄, λphys,mphys) = 0 .

(21.7)
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Renormalization Group

Let’s do an example for the entropy density sren = ∂pren
∂T in order to

avoid issues with the cosmological constant; using
p = pfree − 3λG 2

free(0), we have

s(1) = −∂JB(T ,m)

∂T
− 6λGfree(0)

∂IB(T ,m)

∂T
(21.8)

Now since only Gfree(0) carries a µ̄-dependence

µ̄
∂s(1)

∂µ̄
= −6λ

∂IB(T ,m)

∂T
µ̄
∂Gfree(0)

∂µ̄
(21.9)

Using Eq.(15.16) for Gfree(0), RG-invariance implies

6λ
∂IB(T ,m)

∂T

m2

8π2
= −

[
β

∂

∂λphys
+ γmm2

phys

∂

∂m2
phys

]
s(1) (21.10)
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Renormalization Group

To lowest order in perturbation theory, λ = λphys,m = mphys

Furthermore, (21.2) implies β = O(λ2
phys), so the term β∂λ does not

contribute to order O(λphys)

Moreover, (21.1) implies γm = O(λphys), so to first order in
perturbation theory

∂IB
∂T

6λphysm
2
phys

8π2
= −γmm2

phys

∂

∂m2
phys

s(1) = γmm2
phys

∂

∂m2
phys

∂JB
∂T

,

= γm
m2

phys

2

∂IB
∂T

,

=
3λphys

2π2

m2
phys

2

∂IB
∂T

.
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Renormalization Group

The renormalization group implies consistency conditions that can be
used to check perturbative results

More importantly, RG implies evolution equations such as (21.1),
(21.2) that can be used to solve for λphys,mphys
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The Running Coupling in φ4 Theory

To leading order in perturbation theory, the renormalized coupling
constant in the Lagrangian fulfills (21.2)

Ignoring higher order perturbative corrections, we may rewrite (21.1)
as

3

16π2
=

1

λ2
phys

∂λphys
∂ ln µ̄

= −
∂λ−1

phys

∂ ln µ̄
(21.11)

This can be integrated w.r.t µ̄ to find

λphys(µ̄) =
16π2

3

ln
(
µ0
µ̄

) , (21.12)

where µ0 is an integration constant with [µ0] = 1
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Running Coupling in φ4 Theory
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The Running Coupling in φ4 Theory

Renormalized coupling λphys is small for small energies

λphys(µ̄) grows as a function of energy scale µ̄ (the coupling is
“running”)

The increase of λphys(µ̄) is a result of the positive sign of the β
function; a negative β function would lead to a decreasing λphys

Positive β function implies that the physical coupling of the theory
gets stronger at short distances; this is a problem for thinking about
the continuum limit of the field theory

Theories with negative β function behave the opposite way: the
coupling is small at short distances, and the theory is weakly coupled
in the continuum limit; such theories are called asymptotically free
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The Running Coupling in φ4 Theory

Strange result for φ4 theory: λphys →∞ for a finite energy scale
µ̄ = µ0

We call the scale µ0 where the coupling diverges the Landau pole

Since the β function was calculated in perturbation theory, we cannot
trust that our analysis correctly identifies the large λ behavior of the
theory; so we don’t know for sure if the Landau pole is there or not

If there truly is a Landau pole in the theory, there is a minimum
length scale ∝ µ−1

0 below which the theory does not make any sense;
the theory must be regarded as a cut-off dependent effective theory

There are strong arguments suggesting that there is a Landau pole in
QED
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