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Review

@ Divergencies in QFT require renormalization
@ Renormalized expressions generically involve arbitrary scale i

@ Physical observables cannot depend on arbitrary scale, but parameters
in Lagrangian can

@ In lecture 17, independence of physical quasi-particle mass led us to

8rnphys( ) 3>‘phys(ﬁ)ml2)hys(ﬁ)

M 8/«5 = 27’[‘2 O()‘phys) (211)
@ In lecture 20, independence of physical vertex led us to
_ 8)\phys(,a) 3>‘phys( )
= A 21.2
2 8/1 1672 O( phys) ( )
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Renormalization Group

e Eqns. (21.1), (21.2) represent the dependence of Lagrangian
parameters on the arbitrary scale [i

@ Since these imply that Appnys, Mphys change with 1 we call Appys the
running coupling constant and my,ys the running mass

@ It is customary to introduce the notation

] o
BN zﬁag(;), () zﬁa'aﬁ("), (21.3)

the so-called 8 and ~ functions
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Renormalization Group

@ Let us consider a physically measurable object such as the pressure in
QFT

@ When calculating the pressure in QFT, we typically encounter
divergencies, requiring renormalization

@ After renormalization, the pressure depends on parameters in the
Lagrangian, e.g.

Pren = pren(ﬂv Aphys(ﬁ)a mphys(ﬁ)) (214)
@ However, since the pressure is a physical observable, choosing a
different scale i — i’ must give the same pressure:
Pren (/i Aphys(#1), Mphys (1)) = Pren (7, )‘thS(/_/)> mphyS(ﬁ,)) (21.5)
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Renormalization Group

o Put differently, a physical observable is invariant under changes of the
renormalization scale

@ We call this “renormalization group invariant”

@ For the case of the pressure, renormalization group invariance implies

dpren(,ufa phys(u) mphys(ﬁ))
dpi

=0 (21.6)

d
dii
@ We can use the chain rule to split it up:

@ Here is a total derivative

(9 P ]
+ ﬁa)\Phys +Ymm thSa 2 pren(,u, Aphys, mphys) —0.

Mphys
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-
Renormalization Group
@ Let's do an example for the entropy density S;en = 8{’9’% in order to

avoid issues with the cosmological constant; using
P = Prrce — 3AGZ(0), we have

8Jg(T,m Alg(T, m
L RN L R
@ Now since only Ggeo(0) carries a fi-dependence
0 Ig(T
/1 5(1) _ —6)\8 B( ;m) _8Gfree(0) (219)

on oT on
e Using Eq.(15.16) for Gee(0), RG-invariance implies

0A 15) T 87T

0
—|B5— +Ymm physa >— | sy (21.10)

0 Aphys Mihys
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Renormalization Group

@ To lowest order in perturbation theory, A = Apnys, M = Mppys

e Furthermore, (21.2) implies § = (’)()\%hys), so the term $0, does not
contribute to order O(Aphys)

@ Moreover, (21.1) implies v, = O(Aphys), so to first order in
perturbation theory

Ol Odphys My 5 0,0 O
oT  8n2 MRy A T ImTehvs g T
_ mﬁhyS%
M2 9T
_ 3Aphys mghys %
2n2 2 OT
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Renormalization Group

@ The renormalization group implies consistency conditions that can be
used to check perturbative results

@ More importantly, RG implies evolution equations such as (21.1),
(21.2) that can be used to solve for Aphys, Mphys

paul.romatschke@colorado.edu Lecture 21 Fall 2020 8 /12



-
The Running Coupling in ¢* Theory

o To leading order in perturbation theory, the renormalized coupling
constant in the Lagrangian fulfills (21.2)

@ Ignoring higher order perturbative corrections, we may rewrite (21.1)

as
-1
3 _ 1 a>\phys — _6/\phys (21 11)
1672 >‘123hys olnji olnji '
@ This can be integrated w.r.t i to find
16m*
Aphys(fi) = — (21.12)

where 1 is an integration constant with [uo] =1
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Running Coupling in ¢* Theory
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-
The Running Coupling in ¢* Theory

@ Renormalized coupling Appys is small for small energies

® Aphys(Zt) grows as a function of energy scale fi (the coupling is
“running”)

@ The increase of Apuys(j2) is a result of the positive sign of the
function; a negative 3 function would lead to a decreasing Apnys

@ Positive 8 function implies that the physical coupling of the theory
gets stronger at short distances; this is a problem for thinking about
the continuum limit of the field theory

@ Theories with negative 8 function behave the opposite way: the
coupling is small at short distances, and the theory is weakly coupled
in the continuum limit; such theories are called asymptotically free

paul.romatschke@colorado.edu Lecture 21 Fall 2020 11 /12



-
The Running Coupling in ¢* Theory

@ Strange result for ¢* theory: Aphys — oo for a finite energy scale
f = po
@ We call the scale pg where the coupling diverges the Landau pole
@ Since the 8 function was calculated in perturbation theory, we cannot

trust that our analysis correctly identifies the large \ behavior of the
theory; so we don't know for sure if the Landau pole is there or not

@ If there truly is a Landau pole in the theory, there is a minimum
length scale o ual below which the theory does not make any sense;
the theory must be regarded as a cut-off dependent effective theory

@ There are strong arguments suggesting that there is a Landau pole in
QED
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