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Review

@ In lecture 7, the QFT partition function for a single real scalar field ¢
was given by

Z= /D¢e_55, (22.1)

where Sg is the classical Euclidean action

@ The classical Euclidean action was constrained by containing only
terms consistent with special relativity

@ Restricting to second order in derivatives, we found for a real scalar
field in lecture 8

se= [ Bamaaw V(g)| - (22.2)

@ Let us now discuss what changes if we consider a complex scalar field
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-
The Complex Scalar Field

@ For a single real scalar field, invariance under Lorentz transformation
restricts the classical action to (22.2)

o If we consider a complex scalar field, we need to generalize (22.2)

@ Since physical observables such as the pressure do not have imaginary
parts, we expect the partition function to be real

@ The simplest way to enforce Z to be real is if the Euclidean action Sg
is real

o If Sg has to be real, it must be built out of quadratic forms such as
¢¢*, where ¢* denotes the complex conjugate of ¢

@ If Sg has to be real and invariant under Lorentz transformations,

Sc = [ [02000" + v(/36) (223)

will work
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-
The Complex Scalar Field

@ It is instructive to consider a QFT for a complex scalar field that is
close to the real scalar field case we have considered before

@ For this reason, let us study the particular case
Se = [ [0a00.0" + mPos +axo'?]  (224)
S

in the following

@ Note that in addition to Lorentz invariance, the action (22.4) has an
additional symmetry: it is invariant under the transformation

$(x) = €p(x), (¢"(x) = e 9" (x)) , (22.5)

with arbitrary (but constant) «
@ We will explore the consequence of this symmetry in future lectures
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-
The Complex Scalar Field

@ For now, let us aim at calculating the partition function for the
complex scalar field
@ Since ¢ is complex, we can separate it into a real and imaginary

component
1

NG (d1(x) + id2(x)) (22.6)

¢(x)

with real ¢1, ¢
@ In terms of these components, the action (22.4) becomes

1 1 2 2
Se = / [Qaagblaaqsl + 5 0at20at2 + T-0F + -0+ A (oF + ¢%)2}
(22.7)

@ Similarly,

7= / Dp1Dppe ™k . (22.8)
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-
The Complex Scalar Field

@ When expressed in components, the action for the complex scalar
field looks like two copies of a real scalar field

@ The only coupling between the two copies is provided by the
cross-term 2\¢3¢3

@ Let’s first inspect what happens if we drop the coupling entirely and
consider the free complex scalar field
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|
The Free Complex Scalar Field

@ For the free complex scalar field, we have

SEly—o = So[#1] + So[¢2], (22.9)

where Sol¢] = [, [%8a¢5)a¢ + ’"72¢2} is the free action for a real
scalar field ¢
@ We find that the path integral factorizes:

Zfree = /D¢1D¢2€_SO[¢1]_SO[¢2] = /D¢16_SO[¢1] X /D¢26_50[¢2]
(22.10)

@ As a consequence, the partition function for the complex scalar field is
given by

free free

complex real 2
Z = (22.11)
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The Free Complex Scalar Field

@ Since the pressure is defined as p = 02

By we find for the pressure of
the free complex scalar field

lex T
complex _ In Zf(;zglp i — 2|n Zfr%il — 2preal (22 ]_2)
roo /BV ,BV free .

_ w7

o Using the m = 0 result (11.5) pea™® =

free 9o~ for the renormalized
pressure at temperature T for the real scalar field, we find

2T4
complex,ren __ 70 T

on i (22.13)
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Degrees of Freedom

@ Let's discuss the physics behind the result (22.13)
@ For a free real scalar field, we found

214

real T
= — 22.14
%0 ( )

@ For a free complex scalar field, we found
214

Complex — m T 22 15
p TR (22.15)

because it corresponds to two real scalar fields

@ It's easy to generalize this: for N free real scalar fields, we will have
2 T4
M =nxT 22.16
p %0 (22.16)
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Degrees of Freedom

. . 274
@ Every free scalar field contributes ”gg to the pressure

@ In the following we call this “one (bosonic) degree of freedom”

@ Turning the argument around, we can use the pressure to measure
the number of degrees of freedom in a system

e E.g. given a pressure at temperature T of p(T), the number of
degrees of freedom can be defined as

90p(T)

@ The dof defined this way need not be integer

@ The concept makes sense e.g. in cosmology, where dof changes
depending on which constituents are relevant, e.g. W*, Z bosons,
gluons, etc.
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Degrees of Freedom
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Figure 1. The evolution of the number density (g.x), energy density (g«e), pressure (g+p), and entropy

density (g+s) as functions of temperature.
[https://arxiv.org/pdf/1609.04979.pdf]

paul.romatschke@colorado.edu Lecture 22 Fall 2020 11 /11


https://arxiv.org/pdf/1609.04979.pdf

