paul.romatschke@colorado.edu

Fall 2020

Review

 In lecture 22, we discussed the action for the complex scalar field; in Minkowski space, we have

$$S = -\int_{x} \left[\partial_{\mu} \phi \partial^{\mu} \phi^{*} + m^{2} \phi \phi^{*} + 4\lambda \left(\phi \phi^{*} \right)^{2} \right]. \tag{23.1}$$

 We noted that the action has an additional symmetry under the transformation

$$\phi(x) \to e^{i\alpha}\phi(x), \quad (\phi^*(x) \to e^{-i\alpha}\phi^*(x)), \qquad (23.2)$$

with arbitrary (but constant) α

• Let us now discuss the consequence of this symmetry

Classical Equations of Motion

- Let's write $S = \int_{X} \mathcal{L}$ with $\mathcal{L}(\phi, \phi^{*})$ the Lagrangian density
- We can get the *classical* equations of motion from requiring S to be invariant under changes of ϕ : $S \to S' = S$ or $\delta S = 0$
- Treating ϕ, ϕ^* as independent fields,

$$\delta S = \int_{x} \left[\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \partial_{\mu} \phi + \frac{\partial \mathcal{L}}{\partial \phi^{*}} \delta \phi^{*} + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^{*}} \delta \partial_{\mu} \phi^{*} \right] . \quad (23.3)$$

Using the chain rule, we can write

$$\int_{x} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \partial_{\mu} \phi = \int_{x} \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \phi \right] - \int_{x} \delta \phi \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \right] , \qquad (23.4)$$

and similarly for ϕ^*

Classical Equations of Motion

• The *classical* equations of motion are then

$$\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} = 0 = -m^2 \phi^* - 8\lambda (\phi \phi^*) \phi^* + \Box \phi^*, (23.5)$$

$$\frac{\partial \mathcal{L}}{\partial \phi^*} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^*} = 0 = -m^2 \phi - 8\lambda (\phi \phi^*) \phi + \Box \phi. \quad (23.6)$$

• If we use these classical equations of motion, we get

$$\delta S = \int_{x} \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^{*}} \delta \phi^{*} \right] . \tag{23.7}$$

- As long as the integrand is well-behaved at infinity, the integral of a total derivative vanishes
- We therefore have

$$\delta S = 0 \tag{23.8}$$

for any small variation $\delta\phi$ that's well-behaved at infinity

 Now consider putting the system into a box; the equations of motion (23.5) still hold, and we find

$$\delta S_{\text{box}} = \int_{\text{box}} d^4 x \partial_{\mu} \left[\frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^*} \delta \phi^* \right] . \tag{23.9}$$

- ullet For the symmetry (23.2), the action is invariant, hence $\delta S_{
 m box}=0$
- Plugging in $\delta \phi = i \alpha \phi(x)$ from (23.2), this gives

$$0 = \alpha \int_{\text{box}} d^4 x \partial_{\mu} \left[i \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \phi - i \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^*} \phi^* \right]. \tag{23.10}$$

 Since the shape and size of the box are arbitrary, the integrand must vanish:

$$\partial_{\mu} \left[i \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \phi - i \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^{*}} \phi^{*} \right] = 0 \tag{23.11}$$

• Let's denote the term in brackets in (23.11) as

$$j^{\mu}(x) = i \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi} \phi - i \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi^{*}} \phi^{*}$$
 (23.12)

• Using the explicit action (23.1), j^{μ} becomes

$$j^{\mu} = i\phi^* \partial^{\mu} \phi - \text{c.c.} = 2\text{Im}\phi \partial^{\mu} \phi^*, \qquad (23.13)$$

where c.c. denotes the complex conjugate

• With this notation, (23.11) becomes the classical conservation law for the current density j^{μ} :

$$\partial_{\mu}j^{\mu} = 0 \tag{23.14}$$

ullet Writing $j^{\mu}=\left(egin{array}{c}
ho \ oldsymbol{j} \end{array}
ight)$ we have

$$\partial_{\mu} j^{\mu} = \partial_0 \rho + \nabla \cdot \mathbf{j} = 0. \qquad (23.15)$$

• Integrating over an infinite spatial volume $\int d^3x$ we have

$$\partial_0 \int d^3 x \rho = 0 \,, \tag{23.16}$$

where we have assumed that j falls sufficiently fast at infinity

• We found that the symmetry (23.2) gives rise to a conserved charge

$$Q \equiv \int d^3x \rho \tag{23.17}$$

- This conservation law is classical
- ullet The associated current density j^{μ} is called the *Noether current*
- The Noether theorem stating that every continuous symmetry corresponds to a conserved quantity is an extremely important result in physics
- While we only discussed the particular case (23.2), another important case is the invariance of *S* under translations, giving rise to the conservation of energy and conservation of momentum