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Review

In lecture 22, we discussed the action for the complex scalar field; in
Minkowski space, we have

S = −
∫
x

[
∂µφ∂

µφ∗ + m2φφ∗ + 4λ (φφ∗)2
]
. (23.1)

We noted that the action has an additional symmetry under the
transformation

φ(x)→ e iαφ(x) ,
(
φ∗(x)→ e−iαφ∗(x)

)
, (23.2)

with arbitrary (but constant) α

Let us now discuss the consequence of this symmetry
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Classical Equations of Motion

Let’s write S =
∫
x L with L(φ, φ∗) the Lagrangian density

We can get the classical equations of motion from requiring S to be
invariant under changes of φ: S → S ′ = S or δS = 0

Treating φ, φ∗ as independent fields,

δS =

∫
x

[
∂L
∂φ

δφ+
∂L
∂∂µφ

δ∂µφ+
∂L
∂φ∗

δφ∗ +
∂L

∂∂µφ∗
δ∂µφ

∗
]
. (23.3)

Using the chain rule, we can write∫
x

∂L
∂∂µφ

δ∂µφ =

∫
x
∂µ

[
∂L
∂∂µφ

δφ

]
−
∫
x
δφ∂µ

[
∂L
∂∂µφ

]
, (23.4)

and similarly for φ∗
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Classical Equations of Motion

The classical equations of motion are then

∂L
∂φ
− ∂µ

∂L
∂∂µφ

= 0 = −m2φ∗ − 8λ(φφ∗)φ∗ + �φ∗ , (23.5)

∂L
∂φ∗
− ∂µ

∂L
∂∂µφ∗

= 0 = −m2φ− 8λ(φφ∗)φ+ �φ . (23.6)

If we use these classical equations of motion, we get

δS =

∫
x
∂µ

[
∂L
∂∂µφ

δφ+
∂L

∂∂µφ∗
δφ∗
]
. (23.7)

As long as the integrand is well-behaved at infinity, the integral of a
total derivative vanishes
We therefore have

δS = 0 (23.8)

for any small variation δφ that’s well-behaved at infinity
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Symmetry and Conserved Quantities

Now consider putting the system into a box; the equations of motion
(23.5) still hold, and we find

δSbox =

∫
box

d4x∂µ

[
∂L
∂∂µφ

δφ+
∂L

∂∂µφ∗
δφ∗
]
. (23.9)

For the symmetry (23.2), the action is invariant, hence δSbox = 0

Plugging in δφ = iαφ(x) from (23.2), this gives

0 = α

∫
box

d4x∂µ

[
i
∂L
∂∂µφ

φ− i
∂L

∂∂µφ∗
φ∗
]
. (23.10)

Since the shape and size of the box are arbitrary, the integrand must
vanish:

∂µ

[
i
∂L
∂∂µφ

φ− i
∂L

∂∂µφ∗
φ∗
]

= 0 (23.11)
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Symmetry and Conserved Quantities

Let’s denote the term in brackets in (23.11) as

jµ(x) = i
∂L
∂∂µφ

φ− i
∂L

∂∂µφ∗
φ∗ (23.12)

Using the explicit action (23.1), jµ becomes

jµ = iφ∗∂µφ− c.c. = 2Imφ∂µφ∗ , (23.13)

where c.c. denotes the complex conjugate

With this notation, (23.11) becomes the classical conservation law for
the current density jµ:

∂µj
µ = 0 (23.14)
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Symmetry and Conserved Quantities

Writing jµ =

(
ρ
j

)
we have

∂µj
µ = ∂0ρ+∇ · j = 0 . (23.15)

Integrating over an infinite spatial volume
∫
d3x we have

∂0

∫
d3xρ = 0 , (23.16)

where we have assumed that j falls sufficiently fast at infinity
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Symmetry and Conserved Quantities

We found that the symmetry (23.2) gives rise to a conserved charge

Q ≡
∫

d3xρ (23.17)

This conservation law is classical

The associated current density jµ is called the Noether current

The Noether theorem stating that every continuous symmetry
corresponds to a conserved quantity is an extremely important
result in physics

While we only discussed the particular case (23.2), another important
case is the invariance of S under translations, giving rise to the
conservation of energy and conservation of momentum
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