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Review

@ In lecture 22, we found that the action S for a complex scalar field ¢
was invariant under the transformation

$(x) = ¢'(x) = eo(x) (24.1)

with arbitrary (but constant) «

@ In lecture 23, we discussed the Noether theorem, stating that
continuous symmetries of the classical action give rise to conserved
quantities

@ For the complex scalar field, we found the classical conservation law
" =0, (24.2)

for the Noether current j# = 2Im [¢* 0 @]

@ What about the quantum version of this conservation law?
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]
Quantum Field Theory in Minkowski Space

@ We have set up quantum field theory through the partition function

Z = /D¢e5’5, (24.3)

where Sg is the Euclidean action of the classical field theory

@ This Euclidean field theory is well defined because integrals are
convergent using imaginary time

@ We can formally obtain results for Minkowski space by analytically
continuing to real time as in lecture 16

e Asin Eq. (5.13), we formally get

7= / Dope’ (24.4)

where S is the Minkowski action, e.g. (23.1)
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Quantum Conservation Laws

@ For the complex scalar field, the partition function is given by

7= / D¢Dg* 19’ (24.5)

@ The classical Minkowski action S is invariant under the symmetry
(24.1)

@ Let us now investigate what happens if the symmetry (24.1) also
applies to the full quantum field theory

o If (24.1) is a symmetry of QFT, the partition function is invariant
under the symmetry, and we can write
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Quantum Conservation Laws

@ For the symmetry (24.1), the action is invariant under the
transformation ¢ — ¢':

08 = S[¢', ¢""] — Sl, ¢"] = 0. (24.7)

@ In (23.7) we found that using the equations of motion, for any small
change of ¢

oL
5S = /a [aa 2+ 7, 00| (24.8)

o Let's consider generalizing the symmetry (24.1) to

(x) = e Mg(x), (24.9)
with a(x) now position-dependent
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Quantum Conservation Laws

@ For a(x) small, we therefore have

dp = iax)p(x) (24.10)

e Using 0¢ = ia(x)p(x), (24.8) implies

oL oL
0S5 = —i * 24.11
fou (e |10 a0 ]) (2410
@ We recognize the object in brackets as the classical current density j#
such that

5S = /X 0y (a(x)j"(x)) = / ad,j* + / 00 (24.12)
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Quantum Conservation Laws

@ Using the fact that the classical current is conserved 9,j# = 0, we
have

5S = / ()90 (x) (24.13)

@ As a consequence, we have

&S0 8"1 = SO _ oiSTo] <1 +if jﬂaua> (24.14)
X

@ Moreover, from (24.9) we have
D¢ = Dpe'™™) | D@ = Dp*e= ") (24.15)
such that the measure D¢’ D¢’™* is invariant under (24.9)
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Quantum Conservation Laws

@ Recall that 45 vanishes for any small ¢ because it is an integral over
a total derivative, cf. (24.11)

@ As a consequence, the action is invariant for the generalized
symmetry ¢ — e *X)¢ to linear order in the parameter a

o Therefore, [ DpD¢*e™® = [ D¢'D¢'*e™ holds to linear order in a,
and hence

0= [ 0,000 [ DoD5"j10x) = [ D0l (D (26.16)

@ Integration by parts yields

0= / A (x)9 (" () ) (24.17)
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Quantum Conservation Laws

@ While a(x) is small, it can still be arbitrary

@ For instance, we could expand «(x) in a complete basis set of
functions with arbitrary coefficients

@ Since the integral over a has to vanish for any such choice, the only
possibility is that the integrand itself is vanishing:

0= 8M<j'u(X)>fu11 (24.18)
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Quantum Conservation Laws

@ We find that in quantum field theory, the expectation value of the
current operator is conserved,

8u<j‘u>fu11 =0. (24.19)

@ This generalizes the classical conservation law (24.2)
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