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Review

In lecture 22, we discussed the QFT of a complex scalar field φ

Separating φ into real and imaginary parts φ = 1√
2

(φ1 + iφ2) we

found

Z =

∫
Dφ1Dφ2e

−SE [φ1,φ2] , (26.1)

for the QFT partition function

In this lecture, we will consider an N-component scalar field

~φ =


φ1

φ2

. . .
φN

 (26.2)

as a generalization of the complex scalar field
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The Action for the Complex Scalar Field

For a single complex scalar field, we had in (22.4) the Euclidean action

SE =

∫
s

[
∂aφ∂aφ

∗ + m2φφ∗ + 4λ (φφ∗)2
]
. (26.3)

We found (26.3) has an additional symmetry: it is invariant under the
transformation

φ(x)→ e iαφ(x) ,
(
φ∗(x)→ e−iαφ∗(x)

)
, (26.4)

with arbitrary (but constant) α

This is called a U(1) transformation, for a unitary 1x1 matrix
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The Action for the Complex Scalar Field

In components φ = 1√
2

(φ1 + iφ2) we had in (22.7):

SE =

∫
x

[
1

2
∂aφ1∂aφ1 +

1

2
∂aφ2∂aφ2 +

m2

2
φ2

1 +
m2

2
φ2

2 + λ
(
φ2

1 + φ2
2

)2
]
.

(26.5)

The U(1) symmetry (26.4) now becomes(
φ1(x)
φ2(x)

)
=

(
cosα sinα
− sinα cosα

)(
φ1(x)
φ2(x)

)
, (26.6)

where we can think of φ1, φ2 as the coordinates of a vector in a plane

With this interpretation, (26.6) is the rotation of the vector in the
plane, also called an SO(2) transformation, for a special (unit
determinant) orthogonal 2x2 matrix
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The O(N) Vector Model

Let us now consider a generalization of the 2-component vector(
φ1(x)
φ2(x)

)
to a vector with N scalar field components

~φ =


φ1(x)
φ2(x)
. . .

φN(x)

 . (26.7)

By analogy with the complex scalar field, we expect the Euclidean
action to be invariant under an SO(N) symmetry (in addition to the
usual Lorentz invariance)

In 3+1 dimensions, one such action that generalizes (26.5) is

SE =

∫
x

[
1

2
∂a~φ · ∂a~φ+

m2

2
~φ · ~φ+

2λ

N

(
~φ · ~φ

)2
]
. (26.8)
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The O(N) Vector Model

The QFT that arises from the classical action (26.8) is called the
O(N)-vector model

The partition function for the O(N) vector model is given by

Z =

∫
D~φe−SE . (26.9)

For N=2, the O(N) vector model partition function is identical to Z
for the complex scalar field

For N=1, the O(N) vector model partition function is identical to Z
for the real scalar field, with double the coupling constant
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Solving the O(N) Vector Model

We can treat the interaction term λ
(
~φ · ~φ

)2
in perturbation theory

just like for the real scalar field

However, we have a huge advantage in the O(N) model over a real
scalar field QFT: we can solve the theory exactly in the limit N � 1

This is a rare case where one does not need perturbation theory to
study a QFT

I’ll be covering the basics here, but advanced students may find the
following reference useful: https://arxiv.org/pdf/1905.09290.pdf
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Solving the O(N) Vector Model

To solve the O(N) model in the large N limit, first insert unity in the
path integral for the partition function:

Z =

∫
D~φe−SE × 1 . (26.10)

Next, write unity as a (path-) integral over a δ function

1 =

∫
Dσδ

(
σ −

~φ · ~φ
N

)
(26.11)

Use the δ function to replace the quartic term in the action by σ2
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Solving the O(N) Vector Model

Next, write the δ function in integral representation as

δ

(
σ −

~φ · ~φ
N

)
=

∫
Dζe i

∫
x ζ
(
σ− ~φ·~φ

N

)
(26.12)

We get for Z :

Z =

∫
D~φDσDζe−

1
2

∫
x
~φ[−∂2

a+m2+ 2iζ
N ]~φ−2λN

∫
x σ

2+i
∫
x ζσ . (26.13)

The path integral over σ is Gaussian, we can integrate out σ to find

Z =

∫
D~φDζe−

1
2

∫
x
~φ[−∂2

a+m2+ 2iζ
N ]~φ− 1

8λN

∫
x ζ

2
. (26.14)
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Solving the O(N) Vector Model

Letting ζ → N × ζ gives

Z =

∫
D~φDζe−

1
2

∫
x
~φ[−∂2

a+m2+2iζ]~φ− N
8λ

∫
x ζ

2
. (26.15)

Separating ζ now into a “mean-field” part and fluctuations
ζ(x) = ζ̄ + ζ ′(x) as in lecture 19 gives

Z =

∫
d ζ̄

∫
D~φDζ ′e−

1
2

∫
x
~φ[−∂2

a+m2+2i(ζ̄+ζ′)]~φ−NβV
8λ

ζ̄2− N
8λ

∫
x ζ
′2
.

(26.16)

So far everything is exact for all N

Now let’s consider the limit N →∞
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Solving the O(N) Vector Model

For N →∞, the path integral over ζ ′ gives a contribution of order
e lnN to Z

But the mean-field term is eN � e lnN in the large N limit

So in the large N limit, neglecting the path integral over ζ ′ becomes
exact and we get

lim
N�1

Z =

∫
d ζ̄

∫
D~φe−

1
2

∫
x
~φ[−∂2

a+m2+2i ζ̄]~φ−NβV
8λ

ζ̄2
. (26.17)

The remaining path integral over the O(N) vector field ~φ is Gaussian,
and is given by N-copies of the real scalar field partition function,

lim
N�1

Z =

∫
d ζ̄eN lnZfree(T ,

√
m2+2i ζ̄)−NβV

8λ
ζ̄2
, (26.18)

where the “mass” of the real scalar field is
√
m2 + 2i ζ̄
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Solving the O(N) Vector Model

The remaining integral over ζ̄ can be evaluated from the saddle point
of the integral

For N →∞, the saddle point approximation is not an approximation,
but becomes exact

Denoting the position of the saddle as ζ̄ = ζ̃, we have

lim
N�1

Z = eN lnZfree(T ,
√

m2+2i ζ̃)−NβV
8λ

ζ̃2
. (26.19)

Using the thermodynamic relation p = lnZ
βV this can be written as

lim
N�1

Z = e
NβV

[
pfree(T ,

√
m2+2i ζ̃)− ζ̃

2

8λ

]
. (26.20)

or

p(T ,m, λ) = N

[
pfree(T ,

√
m2 + 2i ζ̃)− ζ̃2

8λ

]
. (26.21)
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Solving the O(N) Vector Model

The exact result for the QFT pressure of the O(N) model depends
on the coupling explicitly as well a implicitly through the saddle point
condition

∂

∂ζ̃
pfree(T ,

√
m2 + 2i ζ̃)− ζ̃

4λ
= 0 . (26.22)

The free pressure for a single scalar field in 3+1 dimensions is
divergent – we will discuss nonperturbative renormalization of the
theory in the next lecture

We will discuss how to evaluate the solution (26.21) in face of the
condition (26.22) in the next lectures
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