The O(N) Vector Model

paul.romatschke@colorado.edu

Fall 2020

Review

- ullet In lecture 22, we discussed the QFT of a complex scalar field ϕ
- Separating ϕ into real and imaginary parts $\phi = \frac{1}{\sqrt{2}} \left(\phi_1 + i \phi_2 \right)$ we found

$$Z = \int \mathcal{D}\phi_1 \mathcal{D}\phi_2 e^{-S_E[\phi_1, \phi_2]}, \qquad (26.1)$$

for the QFT partition function

• In this lecture, we will consider an N-component scalar field

$$\vec{\phi} = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \dots \\ \phi_N \end{pmatrix} \tag{26.2}$$

as a generalization of the complex scalar field

The Action for the Complex Scalar Field

• For a single complex scalar field, we had in (22.4) the Euclidean action

$$S_E = \int_{S} \left[\partial_a \phi \partial_a \phi^* + m^2 \phi \phi^* + 4\lambda \left(\phi \phi^* \right)^2 \right]. \tag{26.3}$$

• We found (26.3) has an additional symmetry: it is invariant under the transformation

$$\phi(x) \to e^{i\alpha}\phi(x), \quad (\phi^*(x) \to e^{-i\alpha}\phi^*(x)), \qquad (26.4)$$

with arbitrary (but constant) α

• This is called a U(1) transformation, for a unitary 1x1 matrix

The Action for the Complex Scalar Field

• In components $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$ we had in (22.7):

$$S_{E} = \int_{x} \left[\frac{1}{2} \partial_{a} \phi_{1} \partial_{a} \phi_{1} + \frac{1}{2} \partial_{a} \phi_{2} \partial_{a} \phi_{2} + \frac{m^{2}}{2} \phi_{1}^{2} + \frac{m^{2}}{2} \phi_{2}^{2} + \lambda \left(\phi_{1}^{2} + \phi_{2}^{2} \right)^{2} \right].$$
(26.5)

• The U(1) symmetry (26.4) now becomes

$$\begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix}, \qquad (26.6)$$

where we can think of ϕ_1,ϕ_2 as the coordinates of a vector in a plane

• With this interpretation, (26.6) is the rotation of the vector in the plane, also called an SO(2) transformation, for a special (unit determinant) orthogonal 2x2 matrix

The O(N) Vector Model

• Let us now consider a generalization of the 2-component vector $\begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix}$ to a vector with N scalar field components

$$\vec{\phi} = \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \\ \dots \\ \phi_N(x) \end{pmatrix} . \tag{26.7}$$

- By analogy with the complex scalar field, we expect the Euclidean action to be invariant under an SO(N) symmetry (in addition to the usual Lorentz invariance)
- In 3+1 dimensions, one such action that generalizes (26.5) is

$$S_{E} = \int_{x} \left[\frac{1}{2} \partial_{a} \vec{\phi} \cdot \partial_{a} \vec{\phi} + \frac{m^{2}}{2} \vec{\phi} \cdot \vec{\phi} + \frac{2\lambda}{N} \left(\vec{\phi} \cdot \vec{\phi} \right)^{2} \right]. \tag{26.8}$$

The O(N) Vector Model

- The QFT that arises from the classical action (26.8) is called the O(N)-vector model
- The partition function for the O(N) vector model is given by

$$Z = \int \mathcal{D}\vec{\phi} e^{-S_E} \,. \tag{26.9}$$

- For N=2, the O(N) vector model partition function is identical to Z
 for the complex scalar field
- For N=1, the O(N) vector model partition function is identical to Z for the real scalar field, with double the coupling constant

- We can treat the interaction term $\lambda \left(\vec{\phi} \cdot \vec{\phi} \right)^2$ in perturbation theory just like for the real scalar field
- However, we have a huge advantage in the O(N) model over a real scalar field QFT: we can solve the theory exactly in the limit $N\gg 1$
- This is a rare case where one does not need perturbation theory to study a QFT
- I'll be covering the basics here, but advanced students may find the following reference useful: https://arxiv.org/pdf/1905.09290.pdf

• To solve the O(N) model in the large N limit, first insert unity in the path integral for the partition function:

$$Z = \int \mathcal{D}\vec{\phi}e^{-S_E} \times 1. \tag{26.10}$$

ullet Next, write unity as a (path-) integral over a δ function

$$1 = \int \mathcal{D}\sigma\delta \left(\sigma - \frac{\vec{\phi} \cdot \vec{\phi}}{N}\right) \tag{26.11}$$

• Use the δ function to replace the quartic term in the action by σ^2

ullet Next, write the δ function in integral representation as

$$\delta\left(\sigma - \frac{\vec{\phi} \cdot \vec{\phi}}{N}\right) = \int \mathcal{D}\zeta e^{i\int_{x} \zeta\left(\sigma - \frac{\vec{\phi} \cdot \vec{\phi}}{N}\right)}$$
 (26.12)

• We get for *Z*:

$$Z = \int \mathcal{D}\vec{\phi}\mathcal{D}\sigma\mathcal{D}\zeta e^{-\frac{1}{2}\int_{x}\vec{\phi}\left[-\partial_{\sigma}^{2} + m^{2} + \frac{2i\zeta}{N}\right]\vec{\phi} - 2\lambda N \int_{x}\sigma^{2} + i \int_{x}\zeta\sigma}.$$
 (26.13)

 \bullet The path integral over σ is Gaussian, we can integrate out σ to find

$$Z = \int \mathcal{D}\vec{\phi}\mathcal{D}\zeta e^{-\frac{1}{2}\int_{x}\vec{\phi}\left[-\partial_{a}^{2} + m^{2} + \frac{2i\zeta}{N}\right]\vec{\phi} - \frac{1}{8\lambda N}\int_{x}\zeta^{2}}.$$
 (26.14)

• Letting $\zeta \to N \times \zeta$ gives

$$Z = \int \mathcal{D}\vec{\phi}\mathcal{D}\zeta e^{-\frac{1}{2}\int_{x}\vec{\phi}\left[-\partial_{a}^{2} + m^{2} + 2i\zeta\right]\vec{\phi} - \frac{N}{8\lambda}\int_{x}\zeta^{2}}.$$
 (26.15)

• Separating ζ now into a "mean-field" part and fluctuations $\zeta(x) = \bar{\zeta} + \zeta'(x)$ as in lecture 19 gives

$$Z = \int d\bar{\zeta} \int \mathcal{D}\vec{\phi} \mathcal{D}\zeta' e^{-\frac{1}{2}\int_{x}\vec{\phi} \left[-\partial_{\sigma}^{2} + m^{2} + 2i(\bar{\zeta} + \zeta')\right]\vec{\phi} - \frac{N\beta V}{8\lambda}\bar{\zeta}^{2} - \frac{N}{8\lambda}\int_{x}{\zeta'^{2}}}.$$
(26.16)

- So far everything is exact for all N
- Now let's consider the limit $N \to \infty$

- For $N \to \infty$, the path integral over ζ' gives a contribution of order $e^{\ln N}$ to Z
- But the mean-field term is $e^N \gg e^{\ln N}$ in the large N limit
- ullet So in the large N limit, neglecting the path integral over ζ' becomes exact and we get

$$\lim_{N\gg 1} Z = \int d\bar{\zeta} \int \mathcal{D}\vec{\phi} e^{-\frac{1}{2}\int_{X}\vec{\phi}\left[-\partial_{a}^{2} + m^{2} + 2i\bar{\zeta}\right]\vec{\phi} - \frac{N\beta V}{8\lambda}\vec{\zeta}^{2}}.$$
 (26.17)

ullet The remaining path integral over the O(N) vector field $\vec{\phi}$ is Gaussian, and is given by N-copies of the real scalar field partition function,

$$\lim_{N\gg 1} Z = \int d\bar{\zeta} e^{N \ln Z_{\text{free}}(T,\sqrt{m^2 + 2i\bar{\zeta}}) - \frac{N\beta V}{8\lambda}\bar{\zeta}^2}, \qquad (26.18)$$

where the "mass" of the real scalar field is $\sqrt{m^2+2i\overline{\zeta}}$

- \bullet The remaining integral over $\bar{\zeta}$ can be evaluated from the saddle point of the integral
- For $N \to \infty$, the saddle point approximation is not an approximation, but becomes exact
- ullet Denoting the position of the saddle as $ar{\zeta}= ilde{\zeta}$, we have

$$\lim_{N\gg 1} Z = e^{N \ln Z_{\text{free}}(T, \sqrt{m^2 + 2i\tilde{\zeta}}) - \frac{N\beta V}{8\lambda} \tilde{\zeta}^2}.$$
 (26.19)

ullet Using the thermodynamic relation $p=rac{\ln Z}{eta V}$ this can be written as

$$\lim_{N\gg 1} Z = e^{N\beta V \left[p_{\text{free}}(T, \sqrt{m^2 + 2i\tilde{\zeta}}) - \frac{\tilde{\zeta}^2}{8\lambda} \right]}.$$
 (26.20)

or

$$p(T, m, \lambda) = N \left[p_{\text{free}}(T, \sqrt{m^2 + 2i\tilde{\zeta}}) - \frac{\tilde{\zeta}^2}{8\lambda} \right]. \tag{26.21}$$

 The exact result for the QFT pressure of the O(N) model depends on the coupling explicitly as well a implicitly through the saddle point condition

$$\frac{\partial}{\partial \tilde{\zeta}} p_{\text{free}}(T, \sqrt{m^2 + 2i\tilde{\zeta}}) - \frac{\tilde{\zeta}}{4\lambda} = 0.$$
 (26.22)

- The free pressure for a single scalar field in 3+1 dimensions is divergent – we will discuss nonperturbative renormalization of the theory in the next lecture
- We will discuss how to evaluate the solution (26.21) in face of the condition (26.22) in the next lectures