The O(N) Vector Model II

paul.romatschke@colorado.edu

Fall 2020

Review

In lecture 26, we solved the O(N) vector model in the large N limit
We found

$$p(T, m, \lambda) = N\left[p_{\text{free}}(T, \sqrt{m^2 + 2i\tilde{\zeta}}) - \frac{\tilde{\zeta}^2}{8\lambda}\right].$$
(27.1)

for the pressure of the O(N) model, where $\ensuremath{\textit{p}_{\rm free}}$ is the free real scalar field pressure

 ${\, \bullet \, }$ Here ${\tilde \zeta}$ is the location of the saddle defined by the condition

$$\frac{\partial}{\partial \tilde{\zeta}} \boldsymbol{p}_{\text{free}}(T, \sqrt{m^2 + 2i\tilde{\zeta}}) - \frac{\tilde{\zeta}}{4\lambda} = 0. \qquad (27.2)$$

• We will renormalize this result for m = 0 in this lecture

Regularization

• We have calculated the free scalar field pressure in lecture 11, finding in $\overline{\mathrm{MS}}$:

$$p_{\text{free}}(T,m) = \frac{m^4}{64\pi^2} \left[\frac{1}{\varepsilon} + \ln\left(\frac{\bar{\mu}^2 e^{\frac{3}{2}}}{m^2}\right) \right] - J_B(T,m) \quad (27.3)$$

- While we want to set m = 0, the saddle point condition (27.2) involves $p_{\rm free}$ evaluated with the *effective mass* $\sqrt{m^2 + 2i\tilde{\zeta}}$
- Writing $x = i\tilde{\zeta}$ and setting m = 0, the saddle point condition (27.2) becomes

$$\frac{x}{8\pi^2} \left[\frac{1}{\varepsilon} + \frac{2\pi^2}{\lambda} + \ln\left(\frac{\bar{\mu}^2 e^1}{2x}\right) \right] - I_B(T, \sqrt{2x}) = 0$$
(27.4)

Renormalization of the O(N) model

- The physical result for the pressure of the O(N) model depends implicitly on the value of the saddle x
- The value of the saddle is determined non-perturbatively from (27.4)
- Perturbative renormalization is not an option for this result
- However, in this case we can perform a **non-perturbative** renormalization by simply putting

$$\frac{1}{2\pi^2\varepsilon} + \frac{1}{\lambda} = \frac{1}{\lambda_{\rm phys}}, \qquad (27.5)$$

with $\lambda_{\rm phys}$ the renormalized coupling constant.

• In this case, the saddle point condition is finite for all λ_{phys} :

$$\frac{x}{8\pi^2} \left[\frac{2\pi^2}{\lambda_{\text{phys}}} + \ln\left(\frac{\bar{\mu}^2 e^1}{2x}\right) \right] - I_B(T, \sqrt{2x}) = 0$$
(27.6)

Renormalization of the O(N) model

• Writing $x = i\tilde{\zeta}$, the m = 0 pressure (27.1) for the O(N) model is given by

$$p(T,\lambda) = N\left[\frac{x^2}{16\pi^2}\left(\frac{1}{\varepsilon} + \ln\left(\frac{\bar{\mu}^2 e^{\frac{3}{2}}}{2x}\right)\right) - J_B(T,\sqrt{2x}) + \frac{x^2}{8\lambda}\right]$$
(27.7)

 Using the non-perturbative renormalization condition (27.5), the divergence exactly cancels and we find

$$p(T,\bar{\mu}) = N\left[\frac{x^2}{16\pi^2} \ln\left(\frac{\bar{\mu}^2 e^{\frac{3}{2}}}{2x}\right) - J_B(T,\sqrt{2x}) + \frac{x^2}{8\lambda_{\rm phys}}\right] \quad (27.8)$$

Renormalization of the O(N) model

- In the large N limit, the O(N) model is non-perturbatively renormalizable
- For *m* = 0 in dim.-reg, the theory only requires coupling-constant renormalization, and in particular *no cosmological constant counterterm*
- Renormalizing λ, the O(N) model pressure is automatically finite in dim.-reg, and can be evaluated non-perturbatively
- Let us now study the properties of this solution

β -function of the O(N) model

- The pressure (27.8) is a physical quantity, and hence cannot depend on the arbitrary choice $\bar{\mu}$
- Just like in lecture 21, we thus must have $\lambda_{\rm phys}(\bar{\mu})$ dependent on $\bar{\mu}$ and

$$\bar{\mu}\frac{dp(T,\lambda_{\rm phys})}{d\bar{\mu}} = Nx^2 \left[\frac{1}{8\pi^2} + \frac{d}{d\ln\bar{\mu}}\frac{1}{8\lambda_{\rm phys}}\right] = 0$$
(27.9)

(Note that we used stationarity $\frac{dp}{dx} = 0$ to simplify this expression) • Clearly, we must have

$$\beta = \bar{\mu} \frac{\partial \lambda_{\text{phys}}}{\partial \bar{\mu}} = \frac{\lambda_{\text{phys}}^2}{\pi^2}$$
(27.10)

which is the exact β -function in the large N limit for all λ

β -function of the O(N) model

• The positive β -function for all λ implies

$$\lambda_{\rm phys}(\bar{\mu}) = \frac{2\pi^2}{\ln \frac{\mu_0^2}{\bar{\mu}^2}},$$
 (27.11)

which is the exact running coupling constant in the O(N) model

- Here μ_0 is the Landau pole of the theory where $\lambda_{phys}(\bar{\mu} = \mu_0) = \infty$.
- For small $\bar{\mu} \ll \mu_0$, the coupling constant is small, but it grows with growing energy scale, cf. lecture 21
- The O(N) model does not have a good continuum (high energy) limit $\bar{\mu} \to \infty$ since it becomes infinitely coupled at $\bar{\mu} = \mu_0$
- We can still treat it as an 'effective theory' valid for $\bar{\mu} \ll \mu_0$

Cosmological constant of the O(N) model

- For T = 0, the pressure (27.8) corresponds to the cosmological constant of the theory
- Unlike other theories we discussed, the cosmological constant in the O(N) model is finite and can be calculated:

$$p(T = 0, \lambda) = \frac{Nx^2}{16\pi^2} \left[\ln\left(\frac{\bar{\mu}^2 e^{\frac{3}{2}}}{2x}\right) + \frac{2\pi^2}{\lambda_{\text{phys}}(\bar{\mu})} \right].$$
 (27.12)

• Plugging in the explicit coupling constant (27.11) this becomes

$$p(T = 0, \lambda) = \frac{Nx^2}{16\pi^2} \ln\left(\frac{\mu_0^2 e^{\frac{3}{2}}}{2x}\right)$$
(27.13)

where x is the solution to the saddle point condition (27.2):

$$\frac{x}{8\pi^2} \ln\left(\frac{\mu_0^2 e^1}{2x}\right) = 0$$
 (27.14)

Cosmological constant of the O(N) model

• Using the saddle point condition, the cosmological constant becomes

$$p(T = 0, \lambda) = \frac{Nx}{16\pi^2}.$$
 (27.15)

• The saddle point condition has two solutions,

$$x = 0, \quad x = \frac{\mu_0^2 e^1}{2}.$$
 (27.16)

- The solution with $x \neq 0$ is proportional to the Landau pole μ_0 ; at this high scale, the theory breaks down; we must therefore discard this solution as unreliable
- The only physical solution is x = 0, so the cosmological constant in this case vanishes:

$$p(T = 0, \lambda) = 0.$$
 (27.17)

Cosmological constant of the O(N) model

• The result

$$p(T = 0, \lambda) = 0.$$
 (27.18)

is very appealing, but potentially misleading

- Recall that in dimensional regularization, only logarithmic divergencies are registered
- By contrast, in cut-off regularization, the zero-temperature pressure would contain terms such as Λ^4, Λ^2 , cf. lecture 11
- These would require additional counterterms in cut-off regularization
- Dimensional regularization results for the cosmological constant need to be interpreted with great care!