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Review

In lecture 26, we solved the O(N) vector model in the large N limit

We found

p(T ,m, λ) = N

[
pfree(T ,

√
m2 + 2i ζ̃)− ζ̃2

8λ

]
. (27.1)

for the pressure of the O(N) model, where pfree is the free real scalar
field pressure

Here ζ̃ is the location of the saddle defined by the condition

∂

∂ζ̃
pfree(T ,

√
m2 + 2i ζ̃)− ζ̃

4λ
= 0 . (27.2)

We will renormalize this result for m = 0 in this lecture
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Regularization

We have calculated the free scalar field pressure in lecture 11, finding
in MS:

pfree(T ,m) =
m4

64π2

[
1

ε
+ ln

(
µ̄2e

3
2

m2

)]
− JB(T ,m) (27.3)

While we want to set m = 0, the saddle point condition (27.2)

involves pfree evaluated with the effective mass

√
m2 + 2i ζ̃

Writing x = i ζ̃ and setting m = 0, the saddle point condition (27.2)
becomes

x

8π2

[
1

ε
+

2π2

λ
+ ln

(
µ̄2e1

2x

)]
− IB(T ,

√
2x) = 0 (27.4)
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Renormalization of the O(N) model

The physical result for the pressure of the O(N) model depends
implicitly on the value of the saddle x

The value of the saddle is determined non-perturbatively from (27.4)

Perturbative renormalization is not an option for this result

However, in this case we can perform a non-perturbative
renormalization by simply putting

1

2π2ε
+

1

λ
=

1

λphys
, (27.5)

with λphys the renormalized coupling constant.

In this case, the saddle point condition is finite for all λphys:

x

8π2

[
2π2

λphys
+ ln

(
µ̄2e1

2x

)]
− IB(T ,

√
2x) = 0 (27.6)
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Renormalization of the O(N) model

Writing x = i ζ̃, the m = 0 pressure (27.1) for the O(N) model is
given by

p(T , λ) = N

[
x2

16π2

(
1

ε
+ ln

(
µ̄2e

3
2

2x

))
− JB(T ,

√
2x) +

x2

8λ

]
(27.7)

Using the non-perturbative renormalization condition (27.5), the
divergence exactly cancels and we find

p(T , µ̄) = N

[
x2

16π2
ln

(
µ̄2e

3
2

2x

)
− JB(T ,

√
2x) +

x2

8λphys

]
(27.8)
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Renormalization of the O(N) model

In the large N limit, the O(N) model is non-perturbatively
renormalizable

For m = 0 in dim.-reg, the theory only requires coupling-constant
renormalization, and in particular no cosmological constant
counterterm

Renormalizing λ, the O(N) model pressure is automatically finite in
dim.-reg, and can be evaluated non-perturbatively

Let us now study the properties of this solution
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β-function of the O(N) model

The pressure (27.8) is a physical quantity, and hence cannot depend
on the arbitrary choice µ̄

Just like in lecture 21, we thus must have λphys(µ̄) dependent on µ̄
and

µ̄
dp(T , λphys)

d µ̄
= Nx2

[
1

8π2
+

d

d ln µ̄

1

8λphys

]
= 0 (27.9)

(Note that we used stationarity dp
dx = 0 to simplify this expression)

Clearly, we must have

β = µ̄
∂λphys
∂µ̄

=
λ2
phys

π2
(27.10)

which is the exact β-function in the large N limit for all λ
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β-function of the O(N) model

The positive β-function for all λ implies

λphys(µ̄) =
2π2

ln
µ2

0
µ̄2

, (27.11)

which is the exact running coupling constant in the O(N) model

Here µ0 is the Landau pole of the theory where λphys(µ̄ = µ0) =∞.

For small µ̄� µ0, the coupling constant is small, but it grows with
growing energy scale, cf. lecture 21

The O(N) model does not have a good continuum (high energy) limit
µ̄→∞ since it becomes infinitely coupled at µ̄ = µ0

We can still treat it as an ’effective theory’ valid for µ̄� µ0
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Cosmological constant of the O(N) model

For T = 0, the pressure (27.8) corresponds to the cosmological
constant of the theory

Unlike other theories we discussed, the cosmological constant in the
O(N) model is finite and can be calculated:

p(T = 0, λ) =
Nx2

16π2

[
ln

(
µ̄2e

3
2

2x

)
+

2π2

λphys(µ̄)

]
. (27.12)

Plugging in the explicit coupling constant (27.11) this becomes

p(T = 0, λ) =
Nx2

16π2
ln

(
µ2

0e
3
2

2x

)
(27.13)

where x is the solution to the saddle point condition (27.2):

x

8π2
ln

(
µ2

0e1

2x

)
= 0 (27.14)
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Cosmological constant of the O(N) model

Using the saddle point condition, the cosmological constant becomes

p(T = 0, λ) =
Nx

16π2
. (27.15)

The saddle point condition has two solutions,

x = 0 , x =
µ2

0e1

2
. (27.16)

The solution with x 6= 0 is proportional to the Landau pole µ0; at this
high scale, the theory breaks down; we must therefore discard this
solution as unreliable

The only physical solution is x = 0, so the cosmological constant in
this case vanishes:

p(T = 0, λ) = 0 . (27.17)
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Cosmological constant of the O(N) model

The result
p(T = 0, λ) = 0 . (27.18)

is very appealing, but potentially misleading

Recall that in dimensional regularization, only logarithmic divergencies
are registered

By contrast, in cut-off regularization, the zero-temperature pressure
would contain terms such as Λ4,Λ2, cf. lecture 11

These would require additional counterterms in cut-off regularization

Dimensional regularization results for the cosmological constant
need to be interpreted with great care!
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