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Review

@ So far, we have dealt with QFT constructions for scalar fields
@ These are spin-0 fields (bosons)

@ However, most fundamental quantum fields in nature are not scalar
fields; the exception is the Higgs field

@ While there are scalar quantum fields in other contexts (e.g.
cond-mat), let us now discuss how to set up spin—% quantum fields
(fermions)
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Bosonic Ladder Operators

@ In lecture 2, we considered the quantum mechanical Hamiltonian

- 1,  mw&?
=—— 1
H 2m8X 5 (30.1)
@ Using the rescaling of the operator
x=-3_ (30.2)

vmw’

this can be written as H = 2 (—862, + 372)

o We can express this Hamiltonian as f = w (373 + 1) using the ladder

operators
85, +q éT _ —8q +q

V2 V2
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5= (30.3)



Bosonic Ladder Operators

@ The ladder operators fulfill the commutation relations
[3,a=1, [33=0, [&,3]=0, (30.4)
and can be used to build up energy eigenstates from

alny =+/nln—1), afln)=vn+1|n+1). (30.5)

o We may use the anti-commutator {a, b} = ab + ba to write the
bosonic Hamiltonian as

= % {aT,a} . (30.6)

@ This is useful for calculating the (bosonic) QM partition function

o0
o 1
Zg = Tre A1 = (n|e —-pH e_ﬁ“’ nt; .
5 > _(nle” ) Z = e

n=0
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Fermionic Ladder Operators

Let us now generalize the bosonic ladder operators to fermionic
ladder operators

Operationally, we do this by changing the commutation relation to an
anti-commutation relation

{3,2*}:1, (3,3} =0, {ata’f}:o. (30.8)
By analogy with (30.6), the fermionic Hamiltonian becomes
A 1
fi= %[a*,a] _w(zﬁa—2> . (30.9)

The anti-commutation relation implies that the Hilbert space consists
of only two energy eigenstates, |0),|1), because

1
at]1) = afaf|o) = E{aT,aT}\O> ~0. (30.10)
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Fermionic Ladder Operators

@ Therefore, the fermionic QM partition function becomes

n=1
Ze = Y (nle ™ |n) = (0]e’F'(0) + (1]eF P71y,
n=0

Bw

Bw _
:e2—|—e 2,

= 2cosh57w. (30.11)

@ This result should be compared to the bosonic QM partition function
(30.7)
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N
Bra- and Ket States

@ We can define bra- and ket- states as eigenstates of 3, ' as
o) = e~<@'|oy = (1 - CQT) 0Y, 3lc) = c|o)
(c| = (0le7® =(0](1—ac*), (clal =(0|c",

where ¢, ¢* are GraBmann variables
@ Such states possess the transition amplitude

(c'|c) = (0] (1 — ac™) (1 - caf) 0) = 1+ (0]ac*cat|o)  (30.12)

e Demanding that the fermionic ladder operators 3, 3T also
anti-commute with ¢, ¢* we get
°
(c|c) =14 (0| c|0) =1+ c*c = e, (30.13)
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N
Bra- and Ket States

@ Using these definitions, we can write
/dc*dcec*c|c><c| = /dc*dcec*c (1 — C§T> |0)(0] (1 — ac™) ,
= 10)(0 +/dc*dcc§T]0><O|§c*,

= |0><0\%—/dc>"d(:c\1><1|c"‘7 (30.14)
10Y(0] + [1)(1] = 1. (30.15)

@ This generalizes the completeness relation 1 =" |n)(n| from
commuting systems to anti-commuting systems
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Fermionic Trace

@ Now consider the GraBmann integral
IA—/dc dee=<"<(—c|A|c) | (30.16)

where A is assumed to be a bosonic (commuting) operator

@ We have
= / de*de(—c*c)(0]A[0) — / dc*de(0)ac*Acal|0) |

= <oyA\o>—<1\/dc*dcc*Ac|1>, (30.17)

= (0]AJ0) + (1]A[1),
= TrA.
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Fermionic Partition Function

@ We now have the technical tools to rewrite the fermionic partition
function (30.11) as a path integral

o First use the trace relation (30.17) to write

Zr = Tre P = / dc*dee™" ¢ (~cle M) . (30.18)

@ Next, split the Boltzmann factor into a product of N > 1 pieces
e P — gmellg-ellg—dl ol , (30.19)

where € = % Since H commutes with itself, there are no
commutators to consider, cf. Eq. (3.4)
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Fermionic Path Integral

@ Next, insert “unity” in the form of
1= /dcf‘dc,-e_ci*c"|c,-><c;|, (30.20)

in-between these different products.

o We get objects such as

_cl.*c;< —c,.*c,-e—eH(C,-*,C,'_1)<

cleH|c_1) = e cilci-1)
e—e{cf(c";:"_l)-&-H(ci*,C,;l)] ’

e

i

(30.21)

@ This takes care of most of the terms in (30.18), except for the
left-most and right-most exponential
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Fermionic Path Integral

o If we label ¢ = ¢ in (30.18), this takes care of the right-most
exponential

@ For the left-most exponential, we thus have

fdcfdclefcl*q(—cl\e*fﬁ\ [ dep denlen)
= [dcidey [ dcjydeyectamH=eram) (¢ |cy)
= [dcidey [ dcfydeyeciar—eien—el(=ci.en)

% €11¢€ .
— [ derdey [ defydeye 1 N e

(30.22)
which is of the same form as (30.21) if we identify

CN+1 = —Cl, Cnp1=—C. (30.23)
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Fermionic Path Integral

@ We find that we can write the fermionic partition function as

ZF = /ch,ch/ch,_lch_l.../dcfdcle_sf (30.24)

where we found the object Sg to be given by

N
Se=eY {c;;lc'“q + H(cl c,-)] (30.25)

; €
i=1

@ This is to be supplemented by the anti-periodic boundary conditions
(30.23)
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-
Continuum Fermionic QM Path Integral

@ As in lecture 4, we can think of the N values i = 1,2,..., N as points
on a the thermal circle

@ In the continuum limit N — oo then ¢; becomes a function of the
imaginary time 7 € [0, A]:

¢ —c(r), ¢ —c*(r), (30.26)

with anti-periodic boundary conditions: ¢(3) = —c(0),
c*(8) = —<*(0)

@ In the continuum limit then

ZF = /DC*Dce_ I3 drler gz +h(ene)] (30.27)
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