Fermions

paul.romatschke@colorado.edu

Fall 2020

Review

- So far, we have dealt with QFT constructions for scalar fields
- These are spin-0 fields (bosons)
- However, most fundamental quantum fields in nature are not scalar fields; the exception is the Higgs field
- While there are scalar quantum fields in other contexts (e.g. cond-mat), let us now discuss how to set up spin- $\frac{1}{2}$ quantum fields (fermions)

Bosonic Ladder Operators

• In lecture 2, we considered the quantum mechanical Hamiltonian

$$\hat{H} = -\frac{1}{2m}\partial_x^2 + \frac{m\omega^2\hat{x}^2}{2}.$$
 (30.1)

Using the rescaling of the operator

$$\hat{x} = \frac{\hat{q}}{\sqrt{m\omega}},\tag{30.2}$$

this can be written as $\hat{\mathrm{H}} = \frac{\omega}{2} \left(-\partial_q^2 + \hat{q}^2 \right)$

• We can express this Hamiltonian as $\hat{H}=\omega\left(\hat{a}^{\dagger}\hat{a}+\frac{1}{2}\right)$ using the ladder operators

$$\hat{\mathbf{a}} = \frac{\partial_q + \hat{\mathbf{q}}}{\sqrt{2}}, \quad \hat{\mathbf{a}}^\dagger = \frac{-\partial_q + \hat{\mathbf{q}}}{\sqrt{2}}.$$
 (30.3)

Bosonic Ladder Operators

• The ladder operators fulfill the commutation relations

$$[\hat{a}, \hat{a}^{\dagger}] = 1, \quad [\hat{a}, \hat{a}] = 0, \quad [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0,$$
 (30.4)

and can be used to build up energy eigenstates from

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle\,,\quad \hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle\,.$$
 (30.5)

• We may use the anti-commutator $\{a,b\} = ab + ba$ to write the bosonic Hamiltonian as

$$\hat{\mathbf{H}} = \frac{\omega}{2} \left\{ \mathbf{a}^{\dagger}, \mathbf{a} \right\} . \tag{30.6}$$

This is useful for calculating the (bosonic) QM partition function

$$Z_B = \operatorname{Tr} e^{-\beta \hat{\mathbf{H}}} = \sum_{n=0}^{\infty} \langle n | e^{-\beta \hat{\mathbf{H}}} | n \rangle = \sum_{n=0}^{\infty} e^{-\beta \omega \left(n + \frac{1}{2}\right)} = \frac{1}{2 \sinh \frac{\beta \omega}{2}}.$$
(30.

Fermionic Ladder Operators

- Let us now generalize the bosonic ladder operators to fermionic ladder operators
- Operationally, we do this by changing the *commutation relation* to an *anti-commutation relation*

$$\{\hat{a}, \hat{a}^{\dagger}\} = 1, \quad \{\hat{a}, \hat{a}\} = 0, \quad \{\hat{a}^{\dagger}, \hat{a}^{\dagger}\} = 0.$$
 (30.8)

By analogy with (30.6), the fermionic Hamiltonian becomes

$$\hat{\mathbf{H}} = \frac{\omega}{2} [\hat{\mathbf{a}}^{\dagger}, \hat{\mathbf{a}}] = \omega \left(\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} - \frac{1}{2} \right). \tag{30.9}$$

• The anti-commutation relation implies that the Hilbert space consists of only two energy eigenstates, $|0\rangle, |1\rangle$, because

$$a^{\dagger}|1\rangle = a^{\dagger}a^{\dagger}|0\rangle = \frac{1}{2}\left\{a^{\dagger}, a^{\dagger}\right\}|0\rangle = 0.$$
 (30.10)

Fermionic Ladder Operators

• Therefore, the fermionic QM partition function becomes

$$Z_{F} = \sum_{n=0}^{n=1} \langle n|e^{-\beta\hat{H}}|n\rangle = \langle 0|e^{\frac{\beta\omega}{2}}|0\rangle + \langle 1|e^{\frac{\beta\omega}{2}-\beta\omega a^{\dagger}a}|1\rangle,$$

$$= e^{\frac{\beta\omega}{2}} + e^{-\frac{\beta\omega}{2}},$$

$$= 2\cosh\frac{\beta\omega}{2}.$$
(30.11)

• This result should be compared to the bosonic QM partition function (30.7)

Bra- and Ket States

• We can define bra- and ket- states as eigenstates of $\hat{a}, \hat{a}^{\dagger}$ as

$$\begin{split} |c\rangle & \equiv & e^{-c\hat{a}^\dagger}|0\rangle = \left(1-c\hat{a}^\dagger\right)|0\rangle\,, \quad \hat{a}|c\rangle = c|0\rangle \\ \langle c| & \equiv & \langle 0|e^{-\hat{a}c^*} = \langle 0|\left(1-\hat{a}c^*\right)\,, \quad \langle c|\hat{a}^\dagger = \langle 0|c^*\,, \end{split}$$

where c, c^* are Graßmann variables

Such states possess the transition amplitude

$$\langle c'|c\rangle = \langle 0|\left(1-\hat{a}c'^*\right)\left(1-c\hat{a}^\dagger\right)|0\rangle = 1+\langle 0|\hat{a}c'^*c\hat{a}^\dagger|0\rangle \quad (30.12)$$

• Demanding that the fermionic ladder operators $\hat{a}, \hat{a}^{\dagger}$ also anti-commute with c, c^* we get

$$\langle c'|c\rangle = 1 + \langle 0|c'^*c|0\rangle = 1 + c'^*c = e^{c'^*c}.$$
 (30.13)

Bra- and Ket States

• Using these definitions, we can write

$$\int dc^* dc e^{-c^*c} |c\rangle \langle c| = \int dc^* dc e^{-c^*c} \left(1 - c\hat{a}^{\dagger}\right) |0\rangle \langle 0| \left(1 - \hat{a}c^*\right),$$

$$= |0\rangle \langle 0| + \int dc^* dc c\hat{a}^{\dagger} |0\rangle \langle 0| \hat{a}c^*,$$

$$= |0\rangle \langle 0| + \int dc^* dc c |1\rangle \langle 1| c^*, \qquad (30.14)$$

$$= |0\rangle \langle 0| + |1\rangle \langle 1| = \mathbf{1}. \qquad (30.15)$$

• This generalizes the completeness relation $\mathbf{1} = \sum_n |n\rangle\langle n|$ from commuting systems to anti-commuting systems

Fermionic Trace

Now consider the Graßmann integral

$$I_A = \int dc^* dc e^{-c^* c} \langle -c | \hat{A} | c \rangle,$$
 (30.16)

where \hat{A} is assumed to be a bosonic (commuting) operator

We have

$$I_{A} = \int dc^{*}dc(-c^{*}c)\langle 0|\hat{A}|0\rangle - \int dc^{*}dc\langle 0|\hat{a}c^{*}\hat{A}c\hat{a}^{\dagger}|0\rangle,$$

$$= \langle 0|\hat{A}|0\rangle - \langle 1|\int dc^{*}dcc^{*}\hat{A}c|1\rangle, \qquad (30.17)$$

$$= \langle 0|\hat{A}|0\rangle + \langle 1|\hat{A}|1\rangle,$$

$$= \operatorname{Tr}\hat{A}.$$

Fermionic Partition Function

- We now have the technical tools to rewrite the fermionic partition function (30.11) as a path integral
- First use the trace relation (30.17) to write

$$Z_F = \operatorname{Tr} e^{-\beta \hat{H}} = \int dc^* dc e^{-c^* c} \langle -c|e^{-\beta \hat{H}}|c\rangle.$$
 (30.18)

ullet Next, split the Boltzmann factor into a product of $N\gg 1$ pieces

$$e^{-\beta \hat{H}} = e^{-\epsilon \hat{H}} e^{-\epsilon \hat{H}} e^{-\epsilon \hat{H}} \dots e^{-\epsilon \hat{H}},$$
 (30.19)

where $\epsilon \equiv \frac{\beta}{N}$. Since \hat{H} commutes with itself, there are no commutators to consider, cf. Eq. (3.4)

Fermionic Path Integral

· Next, insert "unity" in the form of

$$\mathbf{1} = \int dc_i^* dc_i e^{-c_i^* c_i} |c_i\rangle\langle c_i|, \qquad (30.20)$$

in-between these different products.

• We get objects such as

$$e^{-c_{i}^{*}c_{i}}\langle c_{i}|e^{-\epsilon\hat{H}}|c_{i-1}\rangle = e^{-c_{i}^{*}c_{i}}e^{-\epsilon H(c_{i}^{*},c_{i-1})}\langle c_{i}|c_{i-1}\rangle,$$

$$= e^{-\epsilon\left[c_{i}^{*}\frac{(c_{i}-c_{i-1})}{\epsilon}+H(c_{i}^{*},c_{i-1})\right]}, \quad (30.21)$$

• This takes care of most of the terms in (30.18), except for the left-most and right-most exponential

Fermionic Path Integral

- If we label $c = c_1$ in (30.18), this takes care of the right-most exponential
- For the left-most exponential, we thus have

$$\int dc_{1}^{*}dc_{1}e^{-c_{1}^{*}c_{1}}\langle -c_{1}|e^{-\epsilon\hat{H}}| \int dc_{N}^{*}dc_{N}|c_{N}\rangle
= \int dc_{1}^{*}dc_{1} \int dc_{N}^{*}dc_{N}e^{-c_{1}^{*}c_{1}-\epsilon\hat{H}(-c_{1}^{*},c_{N})}\langle -c_{1}|c_{N}\rangle
= \int dc_{1}^{*}dc_{1} \int dc_{N}^{*}dc_{N}e^{-c_{1}^{*}c_{1}-c_{1}^{*}c_{N}-\epsilon\hat{H}(-c_{1}^{*},c_{N})}
= \int dc_{1}^{*}dc_{1} \int dc_{N}^{*}dc_{N}e^{-\epsilon\left[c_{1}^{*}\frac{c_{1}+c_{N}}{\epsilon}+\hat{H}(-c_{1}^{*},c_{N})\right]}
(30.22)$$

which is of the same form as (30.21) if we identify

$$c_{N+1} = -c_1, \quad c_{N+1}^* = -c_1^*.$$
 (30.23)

Fermionic Path Integral

• We find that we can write the fermionic partition function as

$$Z_F = \int dc_N^* dc_N \int dc_{N-1}^* dc_{N-1} \dots \int dc_1^* dc_1 e^{-S_E}$$
 (30.24)

where we found the object S_E to be given by

$$S_E = \epsilon \sum_{i=1}^{N} \left[c_{i+1}^* \frac{c_{i+1} - c_i}{\epsilon} + H(c_{i+1}^*, c_i) \right]$$
(30.25)

• This is to be supplemented by the *anti-periodic* boundary conditions (30.23)

Continuum Fermionic QM Path Integral

- As in lecture 4, we can think of the N values i = 1, 2, ..., N as points on a the thermal circle
- In the continuum limit $N \to \infty$ then c_i becomes a function of the imaginary time $\tau \in [0, \beta]$:

$$c_i \to c(\tau), \quad c_i^* \to c^*(\tau),$$
 (30.26)

with anti-periodic boundary conditions: $c(\beta) = -c(0)$, $c^*(\beta) = -c^*(0)$

In the continuum limit then

$$Z_F = \int \mathcal{D}c^* \mathcal{D}ce^{-\int_0^\beta d\tau \left[c^* \frac{dc}{d\tau} + H(c^*,c)\right]}.$$
 (30.27)