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Review

In lecture 23 we calculated the classical equations of motions for a
scalar field

∂L
∂φ
− ∂µ

∂L
∂∂µφ

= 0 . (31.1)

For a single, real, non-interacting scalar field L = 1
2∂µφ∂

µφ+ 1
2m

2φ2,
the classical equations of motion become

�φ−m2φ = 0 , (31.2)

which is known as the Klein-Gordon equation

In this lecture, we want to study a relativistic wave equation for
fermionic fields
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Schrödinger Equation

To get started, recall that we have a wave equation for fermion
(half-integer spin) fields: the Schrödinger equation

For a free particle, the Schrödinger equation is given by

i∂tψ = − 1

2m
∇2ψ (31.3)

Unfortunately, since the time- and space derivatives appear
asymmetrically, the Schrödinger equation is not relativistically
invariant

For a proper QFT we need relativistic invariance, hence we must
generalize the Schrödinger equation
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A dead end

In the Schrödinger equation, the Hamiltonian is Ĥ = p2

2m

This looks very much like an expansion of the relativistic energy

E =
√
p2 + m2 = m +

p2

2m
+ . . . . (31.4)

It is tempting to write a wave equation such as

i∂tψ =
√
p̂2 + m2ψ (31.5)

Unfortunately, (31.5) is non-local and also not relativistically
covariant; clearly, it cannot be correct
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Dirac’s trick

However, iterating (31.5) leads to

−∂2t ψ − p̂2ψ −m2ψ = 0 = �ψ −m2ψ , (31.6)

which is the Klein-Gordon equation

So the “square” of (31.5) is a proper relativistic wave equation

Dirac: let’s try to take the “correct” square root of the Klein-Gordon
equation

Ansatz for Dirac equation:

i∂tψ = Ĥψ = (−i~α · ∇+ βm)ψ , (31.7)

with constant ~α, β
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Dirac’s trick

Check if we can get Klein-Gordon equation from square:

−∂2t ψ = (−iαi∂i + βm) (−iαj∂j + βm)ψ ,

=
[
αiαj∂i∂j − i (αiβ + βαi ) ∂i + β2m2

]
ψ (31.8)

Clearly, for ordinary numbers ~α, β, this is not the Klein-Gordon
equation because the linear derivative term does not vanish

Dirac realized that it can become the Klein-Gordon equation if ~α, β
are matrices and in particular

{αi , αj} = 2δij1 , {αi , β} = 0 , β2 = 1 . (31.9)
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Dirac’s trick

In modern notation, we define the Dirac matrices γµ = (β, β~α)

The Dirac matrices fulfill the anti-commutation relations (Clifford
algebra)

{γµ, γν} = −2gµν1 (31.10)

Under Hermitian conjugation, we have

γ0† = γ0 , γi† = −γ i . (31.11)

Because of the Cliffor algebra (31.10), we may summarize Hermitian
conjugation as

γµ† = γ0γµγ0 . (31.12)
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Dirac’s trick

The Dirac equation is given by

(i∂µγ
µ −m)ψ = 0 , (31.13)

The Dirac equation fulfills

(i∂µγ
µ + m) (i∂µγ

µ −m)ψ =
(
−∂µ∂νγµγν −m2

)
ψ (31.14)

Note that ψ, unlike φ, must have multiple components. We call ψ a
spinor field
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Dirac’s matrices

There are different choices for γµ fulfilling the Clifford algebra
(31.10), called representations

In 1+1 dimensions, we can e.g. choose from the Pauli matrices σi

In 3+1 dimensions, we have for instance the Dirac representation

γ0 =

(
12 0
0 −12

)
, γi =

(
0 σi

−σi 0

)
. (31.15)

In 3+1 dimensions, since γµ are 4x4 matrices, the spinor field ψ also
has four components, which is sometimes denoted by a greek index,
e.g.

ψ = ψα =


ψ1

ψ2

ψ3

ψ4

 . (31.16)
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Dirac Slash

The combination ∂µγ
µ appears often for spinor fields

It is customary to introduce a new notation for this combination:

/∂ ≡ ∂µγµ, (31.17)

which is pronouned “slashed-d”

This is called the Dirac-slash
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Dirac Adjoint Spinor

The Dirac spinor ψ is in general a four-component complex object

We can obtain a real, scalar object by employing ψ†, the Hermitian
adjoint of ψ:

ψ†ψ (31.18)

Because of the special role of the matrix β = γ0, it is customary to
define the Dirac Adjoint

ψ̄ ≡ ψ†γ0 . (31.19)
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