Fermions II

paul.romatschke@colorado.edu

Fall 2020

Review

In lecture 30 we calculated the fermionic path integral in QM

$$Z_F = \int \mathcal{D}c^* \mathcal{D}ce^{-\int_0^\beta d\tau \left[c^* \frac{dc}{d\tau} + H(c^*,c)\right]}.$$
 (32.1)

• Here $\hat{H}(\hat{a}^{\dagger},\hat{a})$ was the Hamiltonian built out of anti-commuting ladder operators, e.g.

$$\hat{\mathbf{H}} = \omega \left(\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} - \frac{1}{2} \right) , \quad \left\{ \hat{\mathbf{a}}, \hat{\mathbf{a}}^{\dagger} \right\} = 1 .$$
 (32.2)

• In lecture 31, we considered the Dirac field equations

$$(i\partial \!\!\!/ - m) \psi = 0. \tag{32.3}$$

• In this lecture, we construct the Hamiltonian for the Dirac field, defining the path integral for half-integer spin fields

Lagrangian for Dirac Field

- In lecture 22, we constructed a Lagrangian density $\mathcal L$ for a complex scalar field ϕ based on symmetry (e.g. Lorentz transformations)
- In lecture 23, we found the equations of motion for ϕ, ϕ^* , which were treated as independent components
- For the Dirac field, we have the equations of motion: the Dirac equation (32.3)
- \bullet Treating ψ and it's Dirac adjoint $\bar{\psi}$ as independent components, the equations of motion

$$\frac{\partial \mathcal{L}}{\partial \bar{\psi}} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \bar{\psi}} = 0, \qquad (32.4)$$

therefore must correspond to (32.3)

Lagrangian for Dirac Field

 The Lagrangian density that gives rise to the Dirac equation therefore is given by

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi \tag{32.5}$$

 \bullet From the Lagrangian density, we can construct the Hamiltonian density ${\cal H}$ as

$$\mathcal{H} = \pi \partial_0 \psi - \mathcal{L} \,. \tag{32.6}$$

• Here π is the conjugate momentum to the field ψ ,

$$\pi = \frac{\partial \mathcal{L}}{\partial \partial_0 \psi} = \bar{\psi} i \gamma^0 = i \psi^{\dagger} . \tag{32.7}$$

• We therefore find the Hamiltonian density given by

$$\mathcal{H} = \bar{\psi} \left(-i\gamma^{i}\partial_{i} + m \right) \psi \tag{32.8}$$

Hamiltonian for the Dirac Field

• From the Hamiltonian density, the Hamiltonian is given by

$$H = \int_{X} \mathcal{H} = \int_{X} \psi^{\dagger} \left(-i \gamma^{0} \gamma^{i} \partial_{i} + \gamma^{0} m \right) \psi$$
 (32.9)

- ullet Here ψ,ψ^\dagger are classical (but anti-commuting) fields
- If we were to *quantize* the theory, the operators corresponding to ψ, ψ^\dagger would play the same role as the fermionic ladder operators \hat{a}, \hat{a}^\dagger
- Also, the form of the Hamiltonian (32.9) corresponds to (32.2),
 except for the constant term
- We therefore identify the classical (but anti-commuting) fields ψ, ψ^{\dagger} with the classical (but anti-commuting) variables c, c^* in (32.1)

Path Integral for Fermions

- Using this identification, we can write down a path integral for the quantum field theory of a Dirac fermion
- We have

$$\mathcal{Z}_F = \int \mathcal{D}\psi^{\dagger} \mathcal{D}\psi e^{-S_E} , \qquad (32.10)$$

where

$$S_{E} \equiv \int_{0}^{\beta} d\tau \int_{x} \psi^{\dagger} \left[\partial_{\tau} - i \gamma^{0} \gamma^{i} \partial_{i} + \gamma^{0} m \right] \psi.$$
 (32.11)

- ullet As in lecture 5, we refer to S_E as the "Euclidean" action
- Note that the fermionic fields are *anti-periodic* in Euclidean time, e.g. $\psi(\beta, \mathbf{x}) = -\psi(0, \mathbf{x})$

Path Integral for Fermions

• We can define "Euclidean" Dirac matrices

$$\gamma_0^E = \gamma_0 \,, \quad \gamma_i^E = -i\gamma^i \,, \tag{32.12}$$

which obey

$$\left\{ \gamma_{a}^{E}, \gamma_{b}^{E} \right\} = 2\delta_{ab}\mathbf{1}, \quad \gamma_{a}^{E\dagger} = \gamma_{a}^{E}$$
 (32.13)

• We can then simplify the Euclidean Lagrangian density as

$$\mathcal{L}_{E} = \bar{\psi} \left[\gamma_{a}^{E} \partial_{a} + m \right] \psi \tag{32.14}$$

Path Integral for Fermions

- Finally, since ψ^\dagger and $\bar{\psi}$ only differ by a (matrix)-constant, the Jacobian for changing $\mathcal{D}\psi^\dagger$ to $\mathcal{D}\bar{\psi}$ is just a constant
- Ignoring the constant Jacobian, we have

$$Z_{F} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\int_{x}\bar{\psi}\left[\gamma_{a}^{E}\partial_{a}+m\right]\psi}, \qquad (32.15)$$

as the path integral for a quantum field theory for a free Dirac fermion

• We will evaluate the partition function in the next lecture