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Review

In lecture 30 we calculated the fermionic path integral in QM

ZF =

∫
Dc∗Dce−

∫ β
0 dτ[c∗ dc

dτ
+H(c∗,c)] . (32.1)

Here Ĥ(â†, â) was the Hamiltonian built out of anti-commuting ladder
operators, e.g.

Ĥ = ω

(
â†â− 1

2

)
,
{
â, â†

}
= 1 . (32.2)

In lecture 31, we considered the Dirac field equations(
i /∂ −m

)
ψ = 0 . (32.3)

In this lecture, we construct the Hamiltonian for the Dirac field,
defining the path integral for half-integer spin fields
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Lagrangian for Dirac Field

In lecture 22, we constructed a Lagrangian density L for a complex
scalar field φ based on symmetry (e.g. Lorentz transformations)

In lecture 23, we found the equations of motion for φ, φ∗, which were
treated as independent components

For the Dirac field, we have the equations of motion: the Dirac
equation (32.3)

Treating ψ and it’s Dirac adjoint ψ̄ as independent components, the
equations of motion

∂L
∂ψ̄
− ∂µ

∂L
∂∂µψ̄

= 0 , (32.4)

therefore must correspond to (32.3)
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Lagrangian for Dirac Field

The Lagrangian density that gives rise to the Dirac equation therefore
is given by

L = ψ̄
(
i /∂ −m

)
ψ (32.5)

From the Lagrangian density, we can construct the Hamiltonian
density H as

H = π∂0ψ − L . (32.6)

Here π is the conjugate momentum to the field ψ,

π =
∂L
∂∂0ψ

= ψ̄iγ0 = iψ† . (32.7)

We therefore find the Hamiltonian density given by

H = ψ̄
(
−iγ i∂i + m

)
ψ (32.8)
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Hamiltonian for the Dirac Field

From the Hamiltonian density, the Hamiltonian is given by

H =

∫
x
H =

∫
x
ψ†
(
−iγ0γ i∂i + γ0m

)
ψ (32.9)

Here ψ,ψ† are classical (but anti-commuting) fields

If we were to quantize the theory, the operators corresponding to
ψ,ψ† would play the same role as the fermionic ladder operators â, â†

Also, the form of the Hamiltonian (32.9) corresponds to (32.2),
except for the constant term

We therefore identify the classical (but anti-commuting) fields ψ,ψ†

with the classical (but anti-commuting) variables c , c∗ in (32.1)
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Path Integral for Fermions

Using this identification, we can write down a path integral for the
quantum field theory of a Dirac fermion

We have

ZF =

∫
Dψ†Dψe−SE , (32.10)

where

SE ≡
∫ β

0
dτ

∫
x
ψ†
[
∂τ − iγ0γ i∂i + γ0m

]
ψ . (32.11)

As in lecture 5, we refer to SE as the “Euclidean” action

Note that the fermionic fields are anti-periodic in Euclidean time, e.g.
ψ(β, x) = −ψ(0, x)

paul.romatschke@colorado.edu Lecture 32 Fall 2020 6 / 8



Path Integral for Fermions

We can define “Euclidean” Dirac matrices

γE0 = γ0 , γEi = −iγ i , (32.12)

which obey {
γEa , γ

E
b

}
= 2δab1 , γE†a = γEa (32.13)

We can then simplify the Euclidean Lagrangian density as

LE = ψ̄
[
γEa ∂a + m

]
ψ (32.14)
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Path Integral for Fermions

Finally, since ψ† and ψ̄ only differ by a (matrix)-constant, the
Jacobian for changing Dψ† to Dψ̄ is just a constant

Ignoring the constant Jacobian, we have

ZF =

∫
Dψ̄Dψe−

∫
x ψ̄[γEa ∂a+m]ψ , (32.15)

as the path integral for a quantum field theory for a free Dirac fermion

We will evaluate the partition function in the next lecture
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