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Review

@ In lecture 30 we calculated the fermionic path integral in QM

Zr = / Dc*Dee o drler g+H(emo)] (32.1)

o Here H(4f, 3) was the Hamiltonian built out of anti-commuting ladder

operators, e.g.
fl=w (3*3 . ;) : {é, aT} —1. (32.2)

@ In lecture 31, we considered the Dirac field equations

(i — m)p =0. (32.3)

@ In this lecture, we construct the Hamiltonian for the Dirac field,
defining the path integral for half-integer spin fields
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-
Lagrangian for Dirac Field

@ In lecture 22, we constructed a Lagrangian density £ for a complex
scalar field ¢ based on symmetry (e.g. Lorentz transformations)

@ In lecture 23, we found the equations of motion for ¢, ¢*, which were
treated as independent components

@ For the Dirac field, we have the equations of motion: the Dirac
equation (32.3)

@ Treating v and it's Dirac adjoint v as independent components, the
equations of motion

oL _, 0L _
oy oo

therefore must correspond to (32.3)

0, (32.4)
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-
Lagrangian for Dirac Field

@ The Lagrangian density that gives rise to the Dirac equation therefore
is given by B
L=y (/@ — m) P (32.5)

@ From the Lagrangian density, we can construct the Hamiltonian
density H as
H=m0gp — L. (32.6)

@ Here 7 is the conjugate momentum to the field ),

9L oy
_830¢_¢I’Y =iyl (32.7)

™

@ We therefore find the Hamiltonian density given by
H =1 (=iv'0; + m)y (32.8)
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Hamiltonian for the Dirac Field

@ From the Hamiltonian density, the Hamiltonian is given by

H= /’H = /z/ﬂ (=ir°y9; +~°m) 1 (32.9)

@ Here v, 9" are classical (but anti-commuting) fields

o If we were to quantize the theory, the operators corresponding to
¥, ! would play the same role as the fermionic ladder operators 3,

@ Also, the form of the Hamiltonian (32.9) corresponds to (32.2),
except for the constant term

o We therefore identify the classical (but anti-commuting) fields v, 1
with the classical (but anti-commuting) variables ¢, c* in (32.1)
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Path Integral for Fermions

@ Using this identification, we can write down a path integral for the
quantum field theory of a Dirac fermion

o We have
ZF = / Dy Dye™E | (32.10)

where

B .
Se z/ dr/z/ﬁ [0- — 7%y 0; +7°m] 4. (32.11)
0 X

@ As in lecture 5, we refer to Sg as the “Euclidean” action

@ Note that the fermionic fields are anti-periodic in Euclidean time, e.g.

(B, %) = —(0,x)
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Path Integral for Fermions

@ We can define “Euclidean” Dirac matrices

& =, F=-iv, (32.12)

which obey
(W5} =201, A5 =4f (32.13)

@ We can then simplify the Euclidean Lagrangian density as

Le=1 [’yf@a + m] " (32.14)
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Path Integral for Fermions

e Finally, since o' and ¢ only differ by a (matrix)-constant, the
Jacobian for changing D to D is just a constant

@ Ignoring the constant Jacobian, we have
ZF = / DYDype S Phedetmly (32.15)

as the path integral for a quantum field theory for a free Dirac fermion

@ We will evaluate the partition function in the next lecture
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