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Review

@ In lecture 32 we derived the QFT partition function for free Dirac
fermions

Zr = / DYDype b Phsdetmly (33.1)

@ Here 7£ are the Euclidean v matrices and the fermions obey
anti-periodic boundary conditions in the time-like direction,

Y(r =B,x) = —(r =0,x), (T =p,x)=—Y(r=0,x). (33.2)

@ In this lecture, we will solve the path integral (33.1), mirroring the
technique for bosonic fields in lecture 6
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Fermionic Matsubara frequencies

@ We start by writing the fermionic field as a Fourier series

[e.e]

d(rx) = Y eEp(wn,x), (33.3)

n=—0o0

cf. Eq. (6.5)

@ Because the fermions are anti-periodic (33.2), the fermionic
Matsubara frequencies are given by

Gp=mT(2n+1). (33.4)

@ Note that unlike the bosonic Matsubara frequencies w, = 27nT, the
fermionic Matsubara frequencies do not contain a zero mode
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Fermionic Matsubara frequencies

e Similar to bosonic theories discussed in Eq. (9.5), we can also
transform the spatial components of ¢, v to Fourier space:

(1,x) = v Z Z elnTFik: *(wn, k), (33.5)

where V is the volume of space

@ The boundary conditions for the fermions in the space-like directions
will be un-important because of the infinite volume limit V — oo

@ Taking the boundary conditions as periodic in space, anti-periodic in
time, we can define a “fermionic” Euclidean momentum

P, = (&n,p) (33.6)
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Fermionic Action

@ Using this notation, we have

w(x)=ﬂlvge"w(f<), e sze-“xw k). (337)

where V is the volume of space

@ Plugging these expansions into the action in (33.1) we have

Se = 521\/2 / 3 e (P-Rg(K) <ifyfl53+m) W(P),

‘Uz

- 6VZ¢(P)<IZ”+m) W
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Fermionic Path Integral

@ Up to an overall Jacobian from the Fourier-transformation (which we
ignore), the fermionic partition function becomes

ZF = /DIE’D'(ﬁe_BIV Sp(P)(iP+m)y(P) (33.9)

@ This is a "Gaussian” integral for fermions, which are anti-commuting
@ It can be evaluated using the result for multi-dimensional GraBmann
integration given in (29.17):

H/dnidgie—mBiﬂj = detBj . (33.10)
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Fermionic Path Integral

e We find
Zp = C [ det [ii’ + m] , (33.11)
B

where the determinant is over spinor space (spanned by the Dirac
matrices v5) and C is an overall constant.

@ Since Zf is real we can replace the determinant by

det {iﬂ’—i—m} — det\/:—ii"’—i-m] [iﬂ’—i—m],

= dety/ :1752 + m2} : (33.12)

re ~ 2
— det P2—|—m2} 14:[P2+m2} .
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Fermionic Partition Function

@ We have

where E, = \/p? + m?

@ This bears some similarity to the partition function for a real scalar

field, cf. (9.7), (9.10):

ZB:CH[P2+m2]_
P
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=C ] H[w%—{—Elf]_%. (33.14)

n=—oco0 p
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Fermionic Partition Function

@ We evaluated the bosonic partition function in (6.20), (9.10)

@ Ignoring the overall constant C, we had

Zo =TT L _ o Ss[BEen(e®)] (33.15)
5 2sinh (%)

@ Similarly, we can use the result for the fermionic harmonic oscillator
(30.11) to rewrite the fermionic partition function as

4 Ep —BEp
ZF=H[2°°Sh (B?)] B

p
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Fermionic pressure

@ Using the thermodynamic relation p = 'E‘f we therefore find for the

pressure of a free Dirac fermion

—BE,
pF—4VZ[ +Tln<1+e P)} , (33.17)
@ In the large volume limit V — o0, this becomes
*p [Ep -BE,
PF = 4/ 2r)? [2 + Tln (1 + e P)] . (33.18)

e For comparison, for the pressure of a free scalar field we had in (10.3):

pp = — (er’; [g” + Tln (1 - e—ﬂEP)] . (33.19)
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Fermionic pressure

@ Focusing on the zero-temperature case T = 0 we find that
pr = —4pp

@ Recalling the concept of degrees of freedom, and the fact that the
Dirac spinor has four components, we say that one fermionic d.o.f. is
one-quarter of pg

@ Therefore, the pressure of one fermionic dof equals minus the pressure
of one bosonic dof

o If we consider a theory of equal number of fermionic and bosonic
dofs, these have vanishing pressure (cosmological constant)

@ This is a key result in supersymmetry, which needs equal number of
bosons and fermions
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