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Review

In lecture 32 we derived the QFT partition function for free Dirac
fermions

ZF =

∫
Dψ̄Dψe−

∫
x ψ̄[γEa ∂a+m]ψ , (33.1)

Here γEa are the Euclidean γ matrices and the fermions obey
anti-periodic boundary conditions in the time-like direction,

ψ(τ = β, x) = −ψ(τ = 0, x) , ψ̄(τ = β, x) = −ψ̄(τ = 0, x) . (33.2)

In this lecture, we will solve the path integral (33.1), mirroring the
technique for bosonic fields in lecture 6
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Fermionic Matsubara frequencies

We start by writing the fermionic field as a Fourier series

ψ(τ, x) =
∞∑

n=−∞
e iω̃nτψ(ωn, x) , (33.3)

cf. Eq. (6.5)

Because the fermions are anti-periodic (33.2), the fermionic
Matsubara frequencies are given by

ω̃n = πT (2n + 1) . (33.4)

Note that unlike the bosonic Matsubara frequencies ωn = 2πnT , the
fermionic Matsubara frequencies do not contain a zero mode
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Fermionic Matsubara frequencies

Similar to bosonic theories discussed in Eq. (9.5), we can also
transform the spatial components of ψ, ψ̄ to Fourier space:

ψ(τ, x) =
T

V

∑
n

∑
k

e iω̃nτ+ik·xψ(ωn, k) , (33.5)

where V is the volume of space

The boundary conditions for the fermions in the space-like directions
will be un-important because of the infinite volume limit V →∞
Taking the boundary conditions as periodic in space, anti-periodic in
time, we can define a “fermionic” Euclidean momentum

P̃a ≡ (ω̃n,p) (33.6)
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Fermionic Action

Using this notation, we have

ψ(x) =
1

βV

∑
K̃

e i K̃ ·xψ(K̃ ) , ψ̄(x) =
1

βV

∑
K̃

e−i K̃ ·x ψ̄(K̃ ) , (33.7)

where V is the volume of space

Plugging these expansions into the action in (33.1) we have

SE =
1

β2V 2

∫
x

∑
K̃ ,P̃

e ix ·(P̃−K̃)ψ̄(K̃ )
(
iγEa P̃a + m

)
ψ(P̃) ,

=
1

βV

∑
P̃

ψ̄(P̃)
(
iγEa P̃a + m

)
ψ(P̃) ,

=
1

βV

∑
P̃

ψ̄(P̃)
(
i /̃P + m

)
ψ(P̃) . (33.8)
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Fermionic Path Integral

Up to an overall Jacobian from the Fourier-transformation (which we
ignore), the fermionic partition function becomes

ZF =

∫
Dψ̄Dψe−

1
βV

∑
P̃ ψ̄(P̃)(i /̃P+m)ψ(P̃) (33.9)

This is a “Gaussian” integral for fermions, which are anti-commuting

It can be evaluated using the result for multi-dimensional Graßmann
integration given in (29.17):∏

i

∫
dηidθie

−ηiBijθj = detBij . (33.10)
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Fermionic Path Integral

We find
ZF = C̃

∏
P̃

det
[
i /̃P + m

]
, (33.11)

where the determinant is over spinor space (spanned by the Dirac
matrices γEa ) and C̃ is an overall constant.

Since ZF is real we can replace the determinant by

det
[
i /̃P + m

]
= det

√[
−i /̃P + m

] [
i /̃P + m

]
,

= det

√[
/̃P

2
+ m2

]
, (33.12)

= det

√[
P̃2 + m2

]
14 =

[
P̃2 + m2

]2
.
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Fermionic Partition Function

We have

ZF = C̃
∏
P̃

[
P̃2 + m2

]2
= C̃

∞∏
n=−∞

∏
~p

[
ω̃2
n + E 2

p

]2
, (33.13)

where Ep =
√
p2 + m2

This bears some similarity to the partition function for a real scalar
field, cf. (9.7), (9.10):

ZB = C
∏
P

[
P2 + m2

]− 1
2 = C

∞∏
n=−∞

∏
~p

[
ω2
n + E 2

p

]− 1
2 . (33.14)
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Fermionic Partition Function

We evaluated the bosonic partition function in (6.20), (9.10)

Ignoring the overall constant C, we had

ZB =
∏
~p

1

2 sinh
(
βEp

2

) = e
−

∑
~p

[
βEp

2
+ln(1−e−βEp)

]
. (33.15)

Similarly, we can use the result for the fermionic harmonic oscillator
(30.11) to rewrite the fermionic partition function as

ZF =
∏
~p

[
2 cosh

(
βEp

2

)]4

= e
4
∑
~p

[
βEp

2
+ln(1+e−βEp)

]
. (33.16)
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Fermionic pressure

Using the thermodynamic relation p = lnZ
βV we therefore find for the

pressure of a free Dirac fermion

pF = 4
1

V

∑
~p

[
Ep

2
+ T ln

(
1 + e−βEp

)]
, (33.17)

In the large volume limit V →∞, this becomes

pF = 4

∫
d3p

(2π)3

[
Ep

2
+ T ln

(
1 + e−βEp

)]
. (33.18)

For comparison, for the pressure of a free scalar field we had in (10.3):

pB = −
∫

d3p

(2π)3

[
Ep

2
+ T ln

(
1− e−βEp

)]
. (33.19)
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Fermionic pressure

Focusing on the zero-temperature case T = 0 we find that
pF = −4pB

Recalling the concept of degrees of freedom, and the fact that the
Dirac spinor has four components, we say that one fermionic d.o.f. is
one-quarter of pF

Therefore, the pressure of one fermionic dof equals minus the pressure
of one bosonic dof

If we consider a theory of equal number of fermionic and bosonic
dofs, these have vanishing pressure (cosmological constant)

This is a key result in supersymmetry, which needs equal number of
bosons and fermions
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