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Review

In lecture 34, we found the action for scalar electrodynamics

In this lecture, we focus on the gauge field part

SE =
1

4

∫
x

FabFab , Fab = ∂aAb − ∂bAa , (35.1)

We will aim for constructing a QFT partition function using the
classical action SE in this lecture
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Naive Quantum Electrodynamics

Proceeding as with scalar and fermionic field theories, we are tempted
to write

Z =

∫
DAe−SE . (35.2)

We can Fourier-transform the gauge fields as

Aa(x) =
1

βV

∑
K

e iK ·x Ãa(K ) . (35.3)

The Euclidean action then becomes

SE =
1

2βV

∑
K

Ãa(K )
[
K 2δab − KaKb

]
Ãb(−K ) . (35.4)
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Naive Quantum Electrodynamics

The Jacobian from the Fourier transform is a constant and may again
be neglected

The resulting path integral is Gaussian and we find

Z =
∏
K

det−
1
2
[
K 2δab − KaKb

]
. (35.5)

However, there is a problem with this result!

The matrix K 2δab − KaKb has a vanishing eigenvalue because[
K 2δab − KaKb

]
Ka = 0 . (35.6)

Since there is a vanishing eigenvalue, the matrix is not invertible, and
det
[
K 2δab − KaKb

]
= 0
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Naive Quantum Electrodynamics

The naive version of quantum electrodynamics diverges

It’s easy to see why this happens

Recall that SE is invariant under gauge transformations:

Aa(x)→ Aa(x)− ∂aα(x) , (35.7)

for any function α(x)

In our path integral, we integrate over all Aa(x), hence also over all
those that equivalent under the gauge transformation (35.7)

Since SE is constant for all gauge-equivalent A’s, we have∫ ∞
−∞

dαeconst , (35.8)

as part of Z , which diverges
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Compact Quantum Electrodynamics

There is a (non-perturbative) way to make sense of this theory:

We could regulate the divergence properly, so that it does not affect
expectation values, e.g. by compactifying the range of the gauge
parameter: ∫ ∞

−∞
dα→

∫ Λ

−Λ
dα . (35.9)

The resulting theory is known as Compact U(1) gauge theory, and
can be studied e.g. using lattice gauge theory

It has interesting properties (self-interacting photons) that do not
seem (?) to correspond to what happens in nature

For this reason, we will study a different way to repair the theory
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Fadeev-Popov Trick

The problem of the divergent Z is a direct result of invariance under
gauge-transformations

There is an easy, albeit not very elegant, way out: break gauge
invariance

Specifically, we can choose a gauge condition G [A] = 0 that fixes the
gauge. Examples for this are G [A] = A0 (temporal axial gauge) or
∂iAi = 0 (Coulomb gauge) or ∂aAa = 0 (Landau gauge)

Start by considering a path integral for Z only over inequivalent
gauge fields Ā:

Z =

∫
DĀe−SE [Ā] (35.10)

We can “stick-in” unity in this expression by writing

Z =

∫
DĀDGδ(G [A])e−SE [Ā] (35.11)
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Fadeev-Popov Trick

Changing variables for G to the gauge parameter α(x) we have

Z =

∫
DĀDαδ(G [A])det

(
∂G [A]

∂α

)
e−SE [Ā] (35.12)

But the path integral over gauge-inequivalent fields Āa and all gauge
parameters α is the same as the path integral over all gauge fields:

Z =

∫
DAδ(G [A])det

(
∂G [A]

∂α

)
e−SE [Ā] (35.13)

With the δ-function restricting SE to gauge-inequivalent values, we
may write

Z =

∫
DAδ(G [A])det

(
∂G [A]

∂α

)
e−SE [A] (35.14)
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Fadeev-Popov Trick

While G [A] = 0 does the trick, we could just as well use G [A] = f ,
with f an arbitrary (A-independent) function

So we can replace δ(G [A]) by δ(G [A]− f )

Since any function f does the trick, we can average over all f

Performing a path-integral average with a Gaussian weight for f then
leads to

Zgf =

∫
DADf δ(G [A]− f )det

(
∂G [A]

∂α

)
e−

1
2ξ

∫
x f

2(x)e−SE , (35.15)

where ξ is an arbitrary parameter

Using the δ-function, we can perform the integral over f and find

Zgf =

∫
DAdet

(
∂G [A]

∂α

)
e−

1
2ξ

∫
x G

2[A]e−SE . (35.16)
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Fadeev-Popov Trick

We now have a path integral over an exponential that looks very
similar to the ones for scalars/fermions we had before

The only sore is the determinant

We can formally write the determinant as a path integral over an
exponential by exploiting integration over Grassmann fields c̄, c :

Z =

∫
DADc̄Dce−

1
2ξ

∫
x G

2[A]−SE−
∫
x c̄

∂G [A]
∂α

c
. (35.17)

The fields c̄ , c are called Faddeev-Popov ghosts because they are
not “real” fields, but merely introduced as a mathematical trick

Unlike fermion fields, the ghosts fulfill periodic boundary conditions,
just like scalar fields!
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QED

We will solve the gauge-fixed partition function in the next lecture

Including matter fields such as the complex scalar field φ, φ∗ or an
electron spinor ψ does not change the procedure

As a consequence, we find that quantum electrodynamics can be
defined by

Z =

∫
DADψ̄DψDc̄Dce−Smatter−Sgauge−Sgf−Sghosts , (35.18)

where Smatter is the matter part, Sgauge = 1
4

∫
x F 2

ab is the gauge field

part, Sgf = 1
2ξ

∫
x G 2[A] is the gauge-fixing part and Sghosts =

∫
x c̄ ∂G∂α c

is the ghost part of the theory

paul.romatschke@colorado.edu Lecture 35 Fall 2020 11 / 11


