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Review

@ In lecture 34, we found the action for scalar electrodynamics

@ In this lecture, we focus on the gauge field part

1
Se = 1 / FabFab,  Fab = 0,Ap — ObA,, (35.1)
X

o We will aim for constructing a QFT partition function using the
classical action Sg in this lecture
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Naive Quantum Electrodynamics

@ Proceeding as with scalar and fermionic field theories, we are tempted
to write

= / DAe ¢ . (35.2)
@ We can Fourier-transform the gauge fields as

As(x) = 51\/ > e AL (K). (35.3)
K

@ The Euclidean action then becomes

Sg = 25v ZA ) [K2626 — KaKb] An(—K). (35.4)
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Naive Quantum Electrodynamics

@ The Jacobian from the Fourier transform is a constant and may again
be neglected

@ The resulting path integral is Gaussian and we find

Z = [[det 2 [K20a — KoK) - (35.5)
K

@ However, there is a problem with this result!
@ The matrix K26, — K,K}, has a vanishing eigenvalue because

(K262 — KaKp] Ko = 0. (35.6)

@ Since there is a vanishing eigenvalue, the matrix is not invertible, and
det [K?6,5 — KaKp] =0
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Naive Quantum Electrodynamics

@ The naive version of quantum electrodynamics diverges
@ It's easy to see why this happens

@ Recall that Sg is invariant under gauge transformations:
Aa(x) = Aa(x) — dia(x), (35.7)

for any function «(x)

@ In our path integral, we integrate over all A;(x), hence also over all
those that equivalent under the gauge transformation (35.7)

@ Since Sg is constant for all gauge-equivalent A’s, we have

/ daemst (35.8)

as part of Z, which diverges
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Compact Quantum Electrodynamics

@ There is a (non-perturbative) way to make sense of this theory:

@ We could regulate the divergence properly, so that it does not affect
expectation values, e.g. by compactifying the range of the gauge

parameter:
[e'e) A
/ da%/ da. (35.9)
—00 —A

@ The resulting theory is known as Compact U(1) gauge theory, and
can be studied e.g. using lattice gauge theory

@ It has interesting properties (self-interacting photons) that do not
seem (7) to correspond to what happens in nature

@ For this reason, we will study a different way to repair the theory
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-
Fadeev-Popov Trick

@ The problem of the divergent Z is a direct result of invariance under
gauge-transformations

@ There is an easy, albeit not very elegant, way out: break gauge
invariance

@ Specifically, we can choose a gauge condition G[A] = 0 that fixes the
gauge. Examples for this are G[A] = Ay (temporal axial gauge) or
0;A; = 0 (Coulomb gauge) or 9,A; = 0 (Landau gauge)

@ Start by considering a path integral for Z only over inequivalent
gauge fields A:

7= / DAe %A (35.10)

@ We can “stick-in" unity in this expression by writing
Z= / DADGS(G[A])e W (35.11)
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-
Fadeev-Popov Trick

e Changing variables for G to the gauge parameter a(x) we have

_ / DADS(GIA])det (83([;‘]> oSl (35.12)

@ But the path integral over gauge-inequivalent fields A, and all gauge
parameters « is the same as the path integral over all gauge fields:

A -
/DA5 G[A])de t< 6 ]> e elAl (35.13)
@ With the d-function restricting Sg to gauge-inequivalent values, we
may write
/ DAS(G[A])det <ag[A]> Sl (35.14)
Jo!
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-
Fadeev-Popov Trick

e While G[A] = 0 does the trick, we could just as well use G[A] = T,
with f an arbitrary (A-independent) function

@ So we can replace 6(GJ[A]) by 6(G[A] — f)
@ Since any function f does the trick, we can average over all f

@ Performing a path-integral average with a Gaussian weight for f then
leads to

ng:/DAchS(G[A]—f)det (ag[ ]> e [ "X e=Se  (35.15)

where £ is an arbitrary parameter
@ Using the d-function, we can perform the integral over f and find

Ze = /DAdt< 6lA ]) e 2 [ G oS¢ (35.16)
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-
Fadeev-Popov Trick

@ We now have a path integral over an exponential that looks very
similar to the ones for scalars/fermions we had before

@ The only sore is the determinant

@ We can formally write the determinant as a path integral over an
exponential by exploiting integration over Grassmann fields c, c:

aGlA]

Z= / DADeDce 2 J« CW-Se=[ 257 (35.17)

@ The fields ¢, ¢ are called Faddeev-Popov ghosts because they are
not “real” fields, but merely introduced as a mathematical trick

o Unlike fermion fields, the ghosts fulfill periodic boundary conditions,
just like scalar fields!
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|
QED

o We will solve the gauge-fixed partition function in the next lecture

@ Including matter fields such as the complex scalar field ¢, ¢* or an
electron spinor v does not change the procedure

@ As a consequence, we find that quantum electrodynamics can be
defined by
Z — /DAD'IZDwDEDCG matter*sgauge* gf*sghosts’ (3518)
where Spatter is the matter part, Sgauge = % fx Fazb is the gauge field

part, Sef = 2—15 [ G?[A] is the gauge-fixing part and Sghosts = [, Eg—gc
is the ghost part of the theory
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