Solving the U(1) Path Integral

paul.romatschke@colorado.edu

Fall 2020

Review

• In lecture 35, we found the gauge-fixed partition function for a pure U(1) gauge field:

$$Z = \int \mathcal{D}A\mathcal{D}\bar{c}\mathcal{D}ce^{-S_{\text{gauge}}-S_{\text{gf}}-S_{\text{ghost}}}.$$
 (36.1)

Here

$$S_{\text{gauge}} = \frac{1}{4} \int_{x} F_{ab}^{2}, \quad S_{\text{gf}} = \frac{1}{2\xi} \int_{x} G^{2}[A], \quad S_{\text{ghost}} = \int_{x} \bar{c} \frac{\partial G[A]}{\partial \alpha} c,$$

$$(36.2)$$

where $F_{ab} = \partial_a A_b - \partial_b A_a$, G[A] an arbitrary gauge-fixing condition, and ξ an arbitrary gauge-fixing parameter

• Let us solve the partition function in this lecture

Gauge-Fixing

- ullet To get started, we have to choose a gauge condition G[A]
- All choices for G[A] must lead to the same result, but some choices lead to easier calculations of Z than others
- Let's start with the canonical choice of Landau gauge:

$$G[A] = \partial_a A_a \,. \tag{36.3}$$

• Since $A_a \to A_a - \partial_a \alpha$ under gauge transformations, this immediately gives

$$S_{\text{ghost}} = \int_{x} \bar{c} \frac{\partial G[A]}{\partial \alpha} c = \int_{x} \bar{c} \partial_{a} \frac{A_{a}}{\partial \alpha} c = \int_{x} \partial_{a} \bar{c} \partial_{a} c$$
 (36.4)

Gauge-Fixing

- ullet The ghost action does not depend on A_a and $S_{
 m gauge}+S_{
 m gf}$ do not depend on the ghosts
- For the U(1) gauge field, the partition function separates:

$$Z = Z_{\rm A} \times Z_{\rm ghost} \,, \tag{36.5}$$

Here

$$Z_{\rm A} = \int \mathcal{D}Ae^{-S_{
m gauge}-S_{
m gf}} , \quad Z_{
m ghost} = \int \mathcal{D}\bar{c}\mathcal{D}ce^{-S_{
m ghost}} .$$
 (36.6)

Periodicity

 As was the case for the scalar fields and fermions, we start by Fourier-transforming the fields A:

$$A_{a}(x) = \frac{1}{\beta V} \sum_{K} e^{iK \cdot x} \tilde{A}_{a}(x). \qquad (36.7)$$

• Recall that we introduced $A_a(x)$ as necessary to make scalar QED invariant under the local gauge transformations

$$\phi(x) \to e^{i\alpha(x)}\phi(x), \quad A_a(x) \to A_a(x) - \partial_a\alpha(x).$$
 (36.8)

- Since the scalar $\phi(x)$ was periodic in imaginary time $\phi(\tau=\beta,\mathbf{x})=\phi(\tau=0,\mathbf{x})$, this implies that the gauge-transformation α also must be periodic
- As a consequence, the gauge fields $A_a(x)$ are also periodic in the time-like direction, and $K_0 = \omega_n = 2\pi nT$

Path Integral

• We obtain for the Fourier-transformed partition function

$$Z_{\rm A} = \int \mathcal{D}\tilde{A}e^{-\frac{1}{2\beta V}\sum_{K}\tilde{A}_{a}(K)\left[K^{2}\delta_{ab} - K_{a}K_{b} + \frac{1}{\xi}K_{a}K_{b}\right]\tilde{A}_{b}(-K)}$$
(36.9)

The path-integral is Gaussian, so we obtain

$$Z_{\rm A} = \prod_{\kappa} \det^{-\frac{1}{2}} \left[\kappa^2 \delta_{ab} - \kappa_a \kappa_b + \frac{1}{\xi} \kappa_a \kappa_b \right]$$
 (36.10)

• We need to calculate the determinant of the matrix $M_{ab} \equiv \left[K^2 \delta_{ab} - K_a K_b + \frac{1}{\xi} K_a K_b \right]$

Matrix Determinant

We can decompose the Matrix using the two projectors

$$P_{ab}^{T} = \delta_{ab} - \frac{K_a K_b}{K^2}, \quad P_{ab}^{L} = \frac{K_a K_b}{K^2},$$
 (36.11)

These projectors obey

$$P_{ab}^{T}P_{bc}^{L} = 0$$
, $P_{ab}^{T}P_{bc}^{T} = P_{ac}^{T}$, $P_{ab}^{L}P_{bc}^{L} = P_{ac}^{L}$. (36.12)

• In terms of these projectors we have

$$M_{ab} = K^2 P_{ab}^T + \frac{K^2}{\xi} P_{ab}^L \tag{36.13}$$

• This implies that the eigenvalues of M_{ab} are K^2 and K^2/ξ , respectively

Matrix Determinant

Noting furthermore that

$$\operatorname{Tr} P_{ab}^{T} = \delta_{aa} - 1 = 3, \quad \operatorname{Tr} P_{ab}^{L} = 1,$$
 (36.14)

we find that the K^2 eigenvalue has multiplicity 3, and K^2/ξ has multiplicity one

This gives

$$\det M_{ab} = \left(K^2\right)^3 \left(\frac{K^2}{\xi}\right)^1 \,, \tag{36.15}$$

As a consequence, we have

$$Z_{\rm A} = e^{-\frac{1}{2}\sum_{K}\ln\left[K^2\right]^4 + \frac{1}{2}\sum_{K}\ln[\xi]}$$
 (36.16)

Ghost Part

 For the ghost part of the action, transformation to Fourier space leads to

$$Z_{\text{ghost}} = \int \mathcal{D}\bar{c}\mathcal{D}ce^{-\frac{1}{\beta V}\sum_{K}\bar{c}(K)K^{2}c(K)},$$

$$= \prod_{K} K^{2},$$

$$= e^{\sum_{K} \ln K^{2}}.$$
(36.17)

U(1) Partition Function

Combining all parts, we have

$$Z = Z_{\rm A} \times Z_{
m ghost} = e^{-{1\over 2} \sum_{K} ln \left[K^2\right]^4 + {1\over 2} \sum_{K} ln [\xi] + \sum_{K} ln \ K^2}$$
 . (36.18)

• In the large volume limit, the sums become

$$\sum_{K} = \frac{1}{V} \sum_{\omega_n} \int \frac{d^3k}{(2\pi)^3} \,. \tag{36.19}$$

- In dimensional regularization, the integral over a constant vanishes because there is no logarithmic divergence
- Hence

$$\frac{1}{2} \sum_{k} \ln [\xi] \to 0, \qquad (36.20)$$

in dim-reg.

U(1) Partition Function

• Of the remaining parts, we have

$$Z = e^{-\frac{1}{2} \sum_{K} \ln[K^2]^4 + \sum_{K} \ln K^2}.$$
 (36.21)

- We see that the contribution from the ghosts cancels half of the contribution from the gauge fields
- We find

$$Z = e^{-\frac{1}{2}\sum_{K} \ln\left[K^{2}\right]^{2}} = e^{-\frac{1}{2}\times2\sum_{K} \ln\left[\omega_{n}^{2} + \mathbf{k}^{2}\right]}$$
(36.22)

• Comparing to Eq. (33.14), this is exactly equal to the partition function of two free, real, massless scalar fields

U(1) Partition Function

• We find for the pressure of a U(1) gauge field

$$p(T) = 2p_{\text{free}}(m = 0, T) = 2 \times \frac{\pi^2 T^4}{90}.$$
 (36.23)

- This is the pressure for perfect blackbody radiation
- We note that the original gauge field A_a had four degrees of freedom, which matches our result for Z_A
- ullet However, the ghosts contributed *minus* two degrees of freedom, which left us with two physical degrees of freedom for the U(1) gauge field