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Review

In lecture 35, we found the gauge-fixed partition function for a pure
U(1) gauge field:

Z =

∫
DADc̄Dce−Sgauge−Sgf−Sghost . (36.1)

Here

Sgauge =
1

4

∫
x
F 2
ab , Sgf =

1

2ξ

∫
x
G 2[A] , Sghost =

∫
x
c̄
∂G [A]

∂α
c ,

(36.2)
where Fab = ∂aAb − ∂bAa, G [A] an arbitrary gauge-fixing condition,
and ξ an arbitrary gauge-fixing parameter

Let us solve the partition function in this lecture
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Gauge-Fixing

To get started, we have to choose a gauge condition G [A]

All choices for G [A] must lead to the same result, but some choices
lead to easier calculations of Z than others

Let’s start with the canonical choice of Landau gauge:

G [A] = ∂aAa . (36.3)

Since Aa → Aa − ∂aα under gauge transformations, this immediately
gives

Sghost =

∫
x
c̄
∂G [A]

∂α
c =

∫
x
c̄∂a

Aa

∂α
c =

∫
x
∂ac̄∂ac (36.4)
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Gauge-Fixing

The ghost action does not depend on Aa and Sgauge + Sgf do not
depend on the ghosts

For the U(1) gauge field, the partition function separates:

Z = ZA × Zghost , (36.5)

Here

ZA =

∫
DAe−Sgauge−Sgf , Zghost =

∫
Dc̄Dce−Sghost . (36.6)
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Periodicity

As was the case for the scalar fields and fermions, we start by
Fourier-transforming the fields A:

Aa(x) =
1

βV

∑
K

e iK ·x Ãa(x) . (36.7)

Recall that we introduced Aa(x) as necessary to make scalar QED
invariant under the local gauge transformations

φ(x)→ e iα(x)φ(x) , Aa(x)→ Aa(x)− ∂aα(x) . (36.8)

Since the scalar φ(x) was periodic in imaginary time
φ(τ = β, x) = φ(τ = 0, x), this implies that the gauge-transformation
α also must be periodic

As a consequence, the gauge fields Aa(x) are also periodic in the
time-like direction, and K0 = ωn = 2πnT
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Path Integral

We obtain for the Fourier-transformed partition function

ZA =

∫
DÃe−

1
2βV

∑
K Ãa(K)

[
K2δab−KaKb+ 1

ξ
KaKb

]
Ãb(−K)

(36.9)

The path-integral is Gaussian, so we obtain

ZA =
∏
K

det−
1
2

[
K 2δab − KaKb +

1

ξ
KaKb

]
(36.10)

We need to calculate the determinant of the matrix
Mab ≡

[
K 2δab − KaKb + 1

ξKaKb

]
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Matrix Determinant

We can decompose the Matrix using the two projectors

PT
ab = δab −

KaKb

K 2
, PL

ab =
KaKb

K 2
, (36.11)

These projectors obey

PT
abP

L
bc = 0 , PT

abP
T
bc = PT

ac , PL
abP

L
bc = PL

ac . (36.12)

In terms of these projectors we have

Mab = K 2PT
ab +

K 2

ξ
PL
ab (36.13)

This implies that the eigenvalues of Mab are K 2 and K 2/ξ,
respectively
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Matrix Determinant

Noting furthermore that

TrPT
ab = δaa − 1 = 3 , TrPL

ab = 1 , (36.14)

we find that the K 2 eigenvalue has multiplicity 3, and K 2/ξ has
multiplicity one

This gives

detMab =
(
K 2
)3
(
K 2

ξ

)1

, (36.15)

As a consequence, we have

ZA = e−
1
2

∑
K ln[K2]

4
+ 1

2

∑
K ln[ξ] . (36.16)
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Ghost Part

For the ghost part of the action, transformation to Fourier space leads
to

Zghost =

∫
Dc̄Dce−

1
βV

∑
K c̄(K)K2c(K)

,

=
∏
K

K 2 ,

= e
∑

K lnK2
. (36.17)
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U(1) Partition Function

Combining all parts, we have

Z = ZA × Zghost = e−
1
2

∑
K ln[K2]

4
+ 1

2

∑
K ln[ξ]+

∑
K lnK2

. (36.18)

In the large volume limit, the sums become∑
K

=
1

V

∑
ωn

∫
d3k

(2π)3
. (36.19)

In dimensional regularization, the integral over a constant vanishes
because there is no logarithmic divergence

Hence
1

2

∑
K

ln [ξ]→ 0 , (36.20)

in dim-reg.
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U(1) Partition Function

Of the remaining parts, we have

Z = e−
1
2

∑
K ln[K2]

4
+
∑

K lnK2
. (36.21)

We see that the contribution from the ghosts cancels half of the
contribution from the gauge fields

We find
Z = e−

1
2

∑
K ln[K2]

2

= e−
1
2
×2

∑
K ln[ω2

n+k2] (36.22)

Comparing to Eq. (33.14), this is exactly equal to the partition
function of two free, real, massless scalar fields
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U(1) Partition Function

We find for the pressure of a U(1) gauge field

p(T ) = 2pfree(m = 0,T ) = 2× π2T 4

90
. (36.23)

This is the pressure for perfect blackbody radiation

We note that the original gauge field Aa had four degrees of freedom,
which matches our result for ZA

However, the ghosts contributed minus two degrees of freedom, which
left us with two physical degrees of freedom for the U(1) gauge field
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