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Review

@ In lecture 35, we found the gauge-fixed partition function for a pure
U(1) gauge field:

Z= / DADED e Sewuse™Sgt~Sghost (36.1)
@ Here
1 1 _O0GJA
Sgauge = Z / F3b7 ng = Z / G2[A]a Sghost = / C(?L]C’
(36.2)

where F,p = 0,Ap — OpA,, G[A] an arbitrary gauge-fixing condition,
and & an arbitrary gauge-fixing parameter
@ Let us solve the partition function in this lecture
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-
Gauge-Fixing

To get started, we have to choose a gauge condition G[A]

@ All choices for G[A] must lead to the same result, but some choices
lead to easier calculations of Z than others

@ Let's start with the canonical choice of Landau gauge:

G[A] = 9.A, . (36.3)

@ Since A, — A, — 0, under gauge transformations, this immediately
gives
_0GJ[A] . Aa -
= = ay ¢ — aCUa 4
Sghost /X c 50 c /X co 8ac /X 0,¢0,¢ (36.4)
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-
Gauge-Fixing

@ The ghost action does not depend on A, and Sgauge + Sgr do not
depend on the ghosts

@ For the U(1) gauge field, the partition function separates:

= ZA X Zghosta (365)

@ Here

Zp = /DAe_Sga“ge_ e Zghost = /DEDce_ ghost (36.6)
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-
Periodicity

@ As was the case for the scalar fields and fermions, we start by
Fourier-transforming the fields A:

Ay(x) = 61\/ EK: KX A(x). (36.7)

@ Recall that we introduced A,(x) as necessary to make scalar QED
invariant under the local gauge transformations

B(x) = e Mp(x),  Al(x) = As(x) — Baa(x). (36.8)

@ Since the scalar ¢(x) was periodic in imaginary time
(T = B,x) = ¢(7 = 0,x), this implies that the gauge-transformation
« also must be periodic

@ As a consequence, the gauge fields A,(x) are also periodic in the
time-like direction, and Ko = w, = 27nnT
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-
Path Integral

@ We obtain for the Fourier-transformed partition function

Zy = /D/z\e_ﬂ;‘/ S Ax(K) [K2§ab—KaKb+%KaKb]Z\b(—K) (36.9)

@ The path-integral is Gaussian, so we obtain

1
Zy = Hdet—% [K253b — KoKy, + EKaKb (36.10)
K

@ We need to calculate the determinant of the matrix
M., = [K%ab — KK, + %KaKb}
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Matrix Determinant

@ We can decompose the Matrix using the two projectors
K.Kp K.Kp

P"J[—) = 53b - K2 ) Pab K2 P (36]_].)
@ These projectors obey
PbeC_O Pbec_Pa-’::a PbeC—PaLC- (3612)
@ In terms of these projectors we have
K2
M,y = K2PJ, + ?ij (36.13)

e This implies that the eigenvalues of M,;, are K? and K2/¢,
respectively
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Matrix Determinant

@ Noting furthermore that
TrP‘,;’Z7 =0, —1=3, TrPgb =1, (36.14)

we find that the K2 eigenvalue has multiplicity 3, and K2/¢ has
multiplicity one
@ This gives

1
detM,p, = (K?)® <§2> , (36.15)

@ As a consequence, we have

Zn = e 1%k In[K?]*+1 Sy Inle] (36.16)
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Ghost Part

@ For the ghost part of the action, transformation to Fourier space leads

to

Zghost
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-
U(1) Partition Function

@ Combining all parts, we have

Z =275 X Zghost = e—%Zx'n[K2]4+%ZK|n[€]+ZK'n K? (36.18)

@ In the large volume limit, the sums become

dk
Z:\I/Z/W (36.19)

K Wn

o In dimensional regularization, the integral over a constant vanishes
because there is no logarithmic divergence
@ Hence

%Z In[¢] =0, (36.20)
K

in dim-reg.
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-
U(1) Partition Function

@ Of the remaining parts, we have

Z = e 3 Sih[K 4T Kk? (36.21)

@ We see that the contribution from the ghosts cancels half of the
contribution from the gauge fields

o We find )
Z = e 2 K] = g2 Epctn[wi ] (36.22)

e Comparing to Eq. (33.14), this is exactly equal to the partition
function of two free, real, massless scalar fields
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-
U(1) Partition Function

e We find for the pressure of a U(1) gauge field

7.[.2 T4
90

P(T) = 2ptrec(m =0, T) = 2 x (36.23)

@ This is the pressure for perfect blackbody radiation

@ We note that the original gauge field A; had four degrees of freedom,
which matches our result for Z4

@ However, the ghosts contributed minus two degrees of freedom, which
left us with two physical degrees of freedom for the U(1) gauge field
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