Non-Abelian Gauge Theories

paul.romatschke@colorado.edu

Fall 2020

Review

• In lecture 34, we considered the action for a complex scalar field

$$S_E = \int_X \left[(\partial_a + iA_a) \phi (\partial_a + iA_a)^* \phi^* + m^2 \phi^* \phi \right]$$
 (37.1)

 We found that the action is invariant under local U(1) gauge transformations if

$$\phi(x) \to e^{i\alpha(x)}\phi(x), \quad A_{a}(x) \to A_{a}(x) - \partial_{a}\alpha(x).$$
 (37.2)

- We know from lecture 26 that the U(1) transformation is isomorphic to SO(2) if we write $\phi = \frac{1}{\sqrt{2}} (\phi_1 + i\phi_2)$
- ullet Let us now investigate how to generalize this from SO(2) to SO(N)

SO(3)

• To this end, consider an 3-component vector model

$$S_E = \int_x \left[\frac{1}{2} \partial_a \vec{\phi} \cdot \partial_a \vec{\phi} + \frac{m^2}{2} \vec{\phi} \cdot \vec{\phi} \right] . \tag{37.3}$$

• The action is invariant under a global SO(3) transformation

$$\phi_i(x) \to R_{ij}(\alpha_1, \alpha_2)\phi_j(x),$$
 (37.4)

where R_{ij} is a rotation matrix in 3 dimensions w.r.t. 2 constant angles α_1, α_2

• While we can carry through the analysis using SO(3), it's slightly more convenient to switch to use SU(2) instead

- The action for a complex scalar field and a 2-component vector field is the same
- We can use a generalized version for the 3-component vector field
- To this end, consider the object

$$\Phi(x) = \frac{1}{2} \sum_{i=1}^{3} \phi_i(x) \sigma_i, \qquad (37.5)$$

where $\sigma_{1,2,3}$ are the Pauli-matrices

• The Pauli matrices fulfill ${
m Tr}[\sigma_i\sigma_j]=2\delta_{ij}$ and $\sigma_i^\dagger=\sigma_i$ so that

$$\operatorname{Tr}\left[\partial_{a}\Phi(x)\partial_{a}\Phi^{\dagger}(x)\right] = \frac{1}{4}\partial_{a}\phi_{i}(x)\partial_{a}\phi_{j}(x)\operatorname{Tr}\left[\sigma_{i}\sigma_{j}\right] = \frac{1}{2}\partial_{a}\phi_{i}(x)\partial_{a}\phi_{i}(x)$$
(37.6)

• The action (37.3) therefore can be written as

$$S_E = \text{Tr} \int_{x} \left[\partial_a \Phi \partial_a \Phi^{\dagger} + m^2 \Phi \Phi^{\dagger} \right] . \tag{37.7}$$

This action is invariant under the global SU(2) symmetry

$$\Phi(x) \to e^{i\alpha_i\sigma_i}\Phi(x), \quad \Phi^{\dagger}(x) \to \Phi^{\dagger}(x)e^{-i\alpha_i\sigma_i}$$
 (37.8)

because

$${\rm Tr}\left[e^{i\alpha_i\sigma_i}\Phi(x)\Phi^\dagger(x)e^{-i\alpha_i\sigma_i}\right] \,= {\rm Tr}\left[e^{-i\alpha_i\sigma_i}e^{i\alpha_i\sigma_i}\Phi(x)\Phi^\dagger(x)\right]\,.$$

 Let's now consider how to make an action that is invariant under local SU(2) gauge transformations:

$$\Phi(x) \to e^{i\alpha_i(x)\sigma_i}\Phi(x)$$
, (37.9)

• Taking our knowledge from the U(1) case (37.1), we are tempted to write

$$S_E = \operatorname{Tr} \int_X \left[D_a \Phi \left(D_a \Phi \right)^\dagger + m^2 \Phi \Phi^\dagger \right] , \quad D_a \equiv \partial_a + i A_a(x) . \quad (37.10)$$

Here the gauge field needs to transform as

$$A_a(x) \to e^{i\alpha_i(x)\sigma_i} A_a(x) e^{-i\alpha_i(x)\sigma_i} + i \left(\partial_a e^{i\alpha_i(x)\sigma_i}\right) e^{-i\alpha_i(x)\sigma_i}$$
 (37.11)

Let's introduce the new short-hand notation

$$U(x) \equiv e^{i\alpha_i(x)\sigma_i}, \qquad (37.12)$$

• With this, the SU(2) gauge field transformation is

$$A_a(x) \rightarrow U(x)A_a(x)U^{\dagger}(x) + i\left(\partial_a U(x)\right)U^{\dagger}(x)$$
. (37.13)

and

$$D_a\Phi(x) \to U(x)D_a\Phi(x)$$
 (37.14)

• What is the equivalent of F_{ab} for the SU(2) gauge field?

Non-Abelian Field-Strength Tensor

• For the U(1) gauge field, we can write

$$F_{ab} = -i \left[D_a, D_b \right] = \partial_a A_b - \partial_b A_a , \qquad (37.15)$$

where [., .] denotes the commutator

• Let's try this for SU(2):

$$F_{ab} = -i [D_a, D_b] = \partial_a A_b - \partial_b A_a + i [A_a, A_b] .$$
 (37.16)

• Does it transform correctly? Yes (homework problem):

$$F_{ab} \rightarrow U F_{ab} U^{\dagger}$$
 (37.17)

Non-Abelian Action

- A term such as $\operatorname{Tr}[F_{ab}F_{ab}]$ is invariant
- Include in the action:

$$S_E = \text{Tr} \int_x \left[D_a \Phi (D_a \Phi)^{\dagger} + m^2 \Phi \Phi^{\dagger} + \frac{1}{2g^2} F_{ab} F_{ab} \right],$$
 (37.18)

where the constant factor $\frac{1}{2g^2}$ is convention

• We will call g the coupling constant for the non-abelian field theory

Non-Abelian Action

• As with the scalar field (37.5), we can decompose the field-strength tensor in components

$$F_{ab}(x) = \frac{1}{2} \sum_{i=1}^{3} \sigma_i F_{ab}^i.$$
 (37.19)

• In this representation then

$$Tr\left[\frac{1}{2g^2}F_{ab}F_{ab}\right] = \frac{1}{4g^2}F_{ab}^iF_{ab}^i,$$
 (37.20)

where there is summation over both the Euclidean Lorentz indices a, b = 1, 2, 3, 4 and the "color" index i = 1, 2, 3

Non-Abelian Action

• Ignoring the matter part, we are left with the classical action for an SU(2) gauge field:

$$S_E = \frac{1}{2g^2} \text{Tr} \int_x F_{ab} F_{ab} , \quad F_{ab} = \partial_a A_b - \partial_b A_a + i [A_a, A_b] . \quad (37.21)$$

- We derived this result for SU(2) gauge fields (37.19)
- \bullet However, we can generalize (37.21) to gauge groups SU(N) with arbitrary N
- For SU(N), (37.21) remains invariant for

$$A_a(x) \rightarrow U(x)A_a(x)U^{\dagger}(x) + i(\partial_a U(x))U^{\dagger}(x),$$
 (37.22)

and $U(x) = e^{i\alpha_i(x)\lambda_i}$, where λ_i , $i \in [1, N^2 - 1]$ is an element of SU(N)

SU(N) Structure Constants

• We can represent the non-abelian field-strength tensor in components by using the *generators* t_i ,

$$F_{ab} = \sum_{i=1}^{N^2 - 1} F_{ab}^i t_i \tag{37.23}$$

normalized such that $\operatorname{Tr}(t_i t_i) = \frac{1}{2} \delta_{ij}$.

 \bullet For SU(N), the generators are $N\times N$ matrices that obey the commutation relation

$$[t_i, t_j] = if_{ijk}t_k, \qquad (37.24)$$

where f_{ijk} are the structure constants of the SU(N) Lie algebra

• For N=2, $t_i = \frac{1}{2}\sigma_i$ and $f_{ijk} = \epsilon_{ijk}$.

Representation

- While F_{ab} and F_{ab}^{i} encode the same information, they correspond to different *representations*
- In the fundamental representation, one can think of as F_{ab} as a $N \times N$ matrix
- By contrast, F^i_{ab} is the *adjoint* representation, which corresponds to the N^2-1 independent entries of the fundamental representation
- We can use the properties of the generators to derive the field-strength tensor in the adjoint representation as

$$F_{ab}^{i} = 2 \operatorname{Tr} \left[F_{ab} t^{i} \right] = \partial_{a} A_{b}^{i} - \partial_{b} A_{a}^{i} - f_{ijk} A_{a}^{j} A_{b}^{k}. \tag{37.25}$$

Yang-Mills

- For general N, the SU(N) gauge theory is referred to as (classical)
 Yang-Mills theory
- For the special case N=3, the gauge theory becomes relevant for the theory of strong interactions, QCD
- For the special case N=2, the gauge theory becomes relevant for the electroweak theory (Salam-Glashow-Weinberg model)