#### Solving Non-Abelian Gauge Theories

paul.romatschke@colorado.edu

Fall 2020

#### Review

 In lecture 37, we considered the action for the non-abelian gauge group SU(N):

$$S_E = \frac{1}{2g^2} \text{Tr} \int_x [F_{ab}F_{ab}] = \frac{1}{4g^2} \int_x F_{ab}^i F_{ab}^i$$
 (38.1)

where

$$F_{ab}^{i} = \partial_{a}A_{b}^{i} - \partial_{b}A_{a}^{i} - f_{ijk}A_{a}^{j}A_{b}^{k}. \tag{38.2}$$

- The sum in the integrand is over both Lorentz indices a, b and color indices  $i \in [1, N^2 1]$
- In this lecture, we will discuss the *quantum field theory* for the action (38.1)

# Partition function for SU(N) Gauge Theory

The partition function for SU(N) gauge theory is

$$Z = \int \mathcal{D}Ae^{-\frac{1}{4g^2} \int_x F^i_{ab} F^i_{ab}}, \qquad (38.3)$$

- The partition function is a function of the gauge coupling g
- We can always rescale the fields A as

$$A_{a}(x) \to gA_{a}(x), \qquad (38.4)$$

such that

$$Z = \int \mathcal{D}Ae^{-\frac{1}{4}\int_{x}F_{ab}^{i}F_{ab}^{i}}, \quad F_{ab}^{i} = \partial_{a}A_{b}^{i} - \partial_{b}A_{a}^{i} - gf_{ijk}A_{a}^{j}A_{b}^{k}. \quad (38.5)$$

# Partition function for SU(N) Gauge Theory

• In this form it is clear that for  $g \to 0$ , the partition function for SU(N) gauge theory factorizes:

$$Z[g=0] = \prod_{i=1}^{N^2-1} \int \mathcal{D}Ae^{-\frac{1}{4}\int_X F^2} = Z_{U(1)}^{N^2-1}, \qquad (38.6)$$

where here  $F^2 = \partial_a A_b - \partial_b A_a$ 

- $\bullet$  Therefore, the free Yang-Mills theory corresponds to  $\mathit{N}^2-1$  copies of electromagnetism
- $\bullet$  As a consequence, free Yang-Mills theory (and hence weak-coupling perturbation theory) suffers from the same gauge-orbit problems as U(1)
- *Unlike* electromagnetism, the Yang-Mills partition function (38.5) is well defined for  $g \neq 0$

# Perturbative Yang-Mills Theory

- While Yang-Mills theory is non-perturbatively well-defined, it is hard to evaluate Z[g] in practice
- We can nevertheless apply the Faddeev-Popov program from electromagnetism in order to do perturbation theory near g=0
- We again start by considering the path-integral restricted over gauge-inequivalent field configurations  $\bar{A}$ :

$$Z[g] = \int \mathcal{D}\bar{A}e^{-S_E} \,. \tag{38.7}$$

• Now put in unity by restricting to some gauge condition  $G^{i}[A] = f^{i}$ ,

$$Z[g] = \int \mathcal{D}\bar{A}\mathcal{D}G\delta(G^{i}[A] - f^{i})e^{-S_{E}}.$$
 (38.8)

#### **Gauge Condition**

• For the Yang-Mills field, examples for the gauge condition are

$$G^{i}[A] = \partial_{a}A^{i}_{a}, \quad G^{i}[A] = A^{i}_{0}, \quad \text{etc.}$$
 (38.9)

• Changing variables from G to the gauge parameter  $\alpha$ , and recognizing  $\mathcal{D}\bar{A}\mathcal{D}\alpha=\mathcal{D}A$  we have

$$Z[g] = \int \mathcal{D}A\delta(G^{i}[A] - f^{i}) \det\left(\frac{\partial G^{i}[A]}{\partial \alpha^{j}}\right) e^{-S_{E}}.$$
 (38.10)

• Writing the determinant as an exponential with the help of the Grassmann fields  $\bar{c}^i$ ,  $c^i$  we have

$$Z[g] = \int \mathcal{D}A\mathcal{D}\bar{c}\mathcal{D}c\delta(G^{i}[A] - f^{i})e^{-S_{E} - \int_{x} \bar{c}^{i} \frac{\partial G^{i}[A]}{\partial \alpha^{j}} c^{j}}.$$
 (38.11)

### Gauge-Fixed Partition Function

ullet Integrating over  $f^i$  with Gaussian weight leads to

$$Z[g] = \int \mathcal{D}A\mathcal{D}\bar{c}\mathcal{D}ce^{-S_E - S_{\text{ghost}} - S_{\text{gf}}}$$
 (38.12)

where

$$S_{E} = \frac{1}{4g^{2}} \int_{x} F_{ab}^{i} F_{ab}^{i},$$

$$S_{ghost} = \int_{x} \bar{c}^{i} \frac{\partial G^{i}[A]}{\partial \alpha^{j}} c^{j}, \qquad (38.13)$$

$$S_{gf} = \frac{1}{2\xi} \int_{a} G^{i}[A] G^{i}[A]. \qquad (38.14)$$

### Example in Landau Gauge

As an example, consider Landau gauge

$$G^{i}[A] = \partial_{a}A^{i}_{a}. \tag{38.15}$$

• In the fundamental representation, the gauge field transformed as

$$A_a(x) \rightarrow U(x)A_a(x)U^{\dagger}(x) + i(\partial_a U(x))U^{\dagger}(x)$$
. (38.16)

under gauge transformations  $U(x) = e^{i\alpha^i(x)t^i}$ 

• For small  $\alpha$ , this gives in the adjoint representation

$$A_a^i(x) \to A_a^i(x) - \partial_a \alpha^i(x) - f^{ijk} \alpha^j(x) A_a^k(x)$$
. (38.17)

## Example in Landau Gauge

- Unlike the case for U(1), the gauge-transformation for  $A_a$  depends on the field itself
- As a consequence, in the Landau gauge the ghost part of the action becomes

$$S_{\text{ghost}} = \int_{\mathcal{X}} \bar{c}^{i} \frac{\partial G'[A]}{\partial \alpha^{j}} c^{j} = \int_{\mathcal{X}} \left[ \partial_{a} \bar{c}^{i} \partial_{a} c^{j} + \partial_{a} \bar{c}^{i} f^{ijk} A^{k}_{a} c^{j} \right]$$
(38.18)

• Rescaling again  $A_a(x) \to gA_a(x)$  then gives the gauge-fixed partition function in the Landau gauge:

$$Z = \int \mathcal{D}A\mathcal{D}\bar{c}\mathcal{D}ce^{-\int_{X}\left[\frac{1}{4}F_{ab}^{i}F_{ab}^{i} + \frac{1}{2\xi}\partial_{a}A_{a}^{i}\partial_{a}A_{a}^{i} + \partial_{a}\bar{c}^{i}\partial_{a}c^{j} + g\partial_{a}\bar{c}^{i}f^{ijk}A_{a}^{k}c^{j}\right]}.$$
(38.19)

## Example in Landau Gauge

- Unlike in electromagnetism, there is a self-interaction for the gauge fields because  $F^i_{ab} = \partial_a A^i_b \partial_b A^i_a f^{ijk} A^j_a A^k_b$  is nonlinear in the field
- Because there is now a term coupling the ghosts  $\bar{c}$ , c and the gauge field  $A_a$  whenever  $g \neq 0$ , the ghosts no longer decouple
- When calculating observables in Yang-Mills theory, we generally have to deal with gauge-field vertices as well as ghost-gauge field vertices
- Even one-loop calculations are generally non-trivial in Yang-Mills theory!