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Review

@ In lecture 39, we revisited the partition function in TAG, finding for
the U(1) partition function

7 = e 2 2k In(K?) (40.1)

@ The power of 2 in the argument of the logarithm arose from the fact
that Z only had contributions from transverse polarizations of the
photon, while all others canceled out

@ The sum in (40.1) is over all four momenta K = (wp, k)

@ In this lecture, we will use (40.1) to study the so-called Casimir effect
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QFT in a finite volume

Because we need to consider QFT in a finite volume, there are a few
differences wrt our usual treatment

@ There are spatial boundary conditions, e.g. at z =10, L
o If the plates at z =0, L are conducting, Ej;, B, have to vanish there

@ The pressure and free energy expressions differ. We now have

10InZ
= 40.2
for the pressure, whereas the free energy is Q = —'E—\f
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Boundary conditions

Because we need to consider QFT in a finite volume, there are a few
differences wrt our usual treatment

o If the plates at z = 0, L are conducting, E;, B have to vanish there
e This implies A(t,x,y,z=0) = A(t,x,y,z=L)=0
o We write A(z) = %Zkz e’z A(k,) as before

@ Since A(z) is real, we have

Alz) = %Z [cos(kzz)ReZ\(kz) —sin(kzz)lml\(kz)} . (40.3)
kz

o A(z =0) = 0 implies ReA(k,) = 0
@ The boundary condition at z = L then implies

k; = ?7 meZ (404)
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-
Path Integrals — “Normal” BCs

@ When performing the path integral, we are integrating exponentials of
quadratic forms, e.g. in one dimension

/ Dge3 i m*#*(x) | (40.5)

e Fourier-transforming the fields (without non-trivial BCs) we have
/que_é S m(k)o* (k) — /’Dakake_nf PIAERTA , (40.6)
where ¢(k) = ax + ibx

e For open boundary conditions, the relation ¢*(k) = ¢(—k) leads to
the restriction

/ Dpe7 Lumo(k)e" (k) — / DayDbye ™ Tidol# 5] - (40.7)
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-
Path Integrals — “Normal” BCs

@ Each of the integrals ay, by gives

/Dake’”2 ZEon =] ,/% (40.8)
k=0

@ Therefore

00 2
/m IXemie(k)e (k) _ H< /r:;> , (40.9)

x
Il
o
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-
Path Integrals — Conducting Plates BCs

@ In the case of conducting plates, the imaginary part vanishes, so
instead of

/Dakake_m2Z;i0[ai+bi] — ez (40.10)

we have
/Dakem2 Sold] = ema Xuln (40.11)

@ Therefore, we need to adjust the formula (40.1) for the partition

function to ) )
Z = e s Xk (k)" (40.12)
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Partition function

@ The partition function for the conducting plates becomes from (40.12)

InZ:—%ZZZIn (W2 + kT +K2) , (40.13)

Wn kJ_ k>
2 2 2
where kT = kg + ky

@ Assuming the conducting plates to be parallel and infinitely large, k|
becomes continuous in the large volume limit

@ We can perform the sum over the Matsubara frequencies as in lecture
6, finding

K2+ K2
hz=->"%" Bl;z—l—ln(l—e_ﬁ\/ki“zz) . (40.14)
ki ks
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Partition function

@ Concentrating on the zero temperature limit 5 — oo, we have

InZ_——ZZ\/l@ + k2 (40.15)

ki ks

@ Since k, values are discrete, we have

InZ_——Z Z VK2t m” (40.16)

k, m=-—o0

o If we make the perpendicular directions very large, this becomes

IhnZ =— ﬁVL dki Z N m” (40.17)
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N
Partition function

@ The integral over k; can be done using the function ® defined in

lecture 10:
dPk A 1 T(A-2) _AtD
®(m, D,A):/ k> 4+ m?) " = 2/ (m? 2
o M) = e @ ™)
(40.18)
o We find with D=2 —2¢, A= —%:
3 3
BV =1 [m?n?\?2 B 1 (mPrR\?
nZ =+ mzzoo&r E _Bvim;&r 2 )
(40.19)
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Partition function

@ The Riemann ( function is defined as

i =N (40.20)

mS
m=1
@ Using the (-function, we have
IBVJ_TF
InZ = Vi3 L3 Z 3 C(=3). (40.21)

@ Since dim-reg and (-function regularization are the same, we can use
-3)=—. 40.22
((-3) = o (4022)
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Partition function

@ This leads to

_ BVir? -3

InZ = 720 L. (40.23)

@ As a result, the Casimir pressure is

190InZ 1 9nZ w2 (-3)
S - = ) 40.24
P=37av ~Bv, oL 720 [* (40.24)
@ We find the result
2
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Casimir Force

@ The pressure is negative
@ The pressure is force per unit area

@ For a boundary plate area of V|, this implies the force per unit area

F 2
- —_—p=_—— 40.2
YL (40.26)
@ The force on the boundary plates is attractive
@ We can convert to Sl units:
F 72 m?
— = he~-12x10"Y"N—. 40.27
V., 24004 X L4 (40.27)

paul.romatschke@colorado.edu Lecture 40 Fall 2020 14 / 16



Casimir Force

@ The Casimir force is a prediction from QFT

@ It has been experimentally verified with high precision experiments,
e.g. in [Mohideen and Roy, PRL81, 1998]
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https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.81.4549
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