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Review

In lecture 39, we revisited the partition function in TAG, finding for
the U(1) partition function

Z = e−
1
2

∑
K ln(K2)

2

(40.1)

The power of 2 in the argument of the logarithm arose from the fact
that Z only had contributions from transverse polarizations of the
photon, while all others canceled out

The sum in (40.1) is over all four momenta K = (ωn, k)

In this lecture, we will use (40.1) to study the so-called Casimir effect
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Casimir Effect
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QFT in a finite volume

Because we need to consider QFT in a finite volume, there are a few
differences wrt our usual treatment

There are spatial boundary conditions, e.g. at z = 0, L

If the plates at z = 0, L are conducting, E||,B⊥ have to vanish there

The pressure and free energy expressions differ. We now have

p =
1

β

∂ lnZ

∂V
, (40.2)

for the pressure, whereas the free energy is Ω = − lnZ
βV
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Boundary conditions

Because we need to consider QFT in a finite volume, there are a few
differences wrt our usual treatment

If the plates at z = 0, L are conducting, E||,B⊥ have to vanish there

This implies A(t, x , y , z = 0) = A(t, x , y , z = L) = 0

We write A(z) = 1
L

∑
kz
e ikzz Ã(kz) as before

Since A(z) is real, we have

A(z) =
1

L

∑
kz

[
cos(kzz)ReÃ(kz)− sin(kzz)ImÃ(kz)

]
. (40.3)

A(z = 0) = 0 implies ReÃ(kz) = 0

The boundary condition at z = L then implies

kz =
mπ

L
, m ∈ Z (40.4)
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Path Integrals – “Normal” BCs

When performing the path integral, we are integrating exponentials of
quadratic forms, e.g. in one dimension∫

Dφe−
1
2

∫
x m

2φ2(x) . (40.5)

Fourier-transforming the fields (without non-trivial BCs) we have∫
Dφe−

1
2

∑
k m

2φ(k)φ∗(k) =

∫
DakDbke−

m2

2

∑
k [a2k+b2k ] , (40.6)

where φ(k) = ak + ibk
For open boundary conditions, the relation φ∗(k) = φ(−k) leads to
the restriction∫

Dφe−
1
2

∑
k m

2φ(k)φ∗(k) =

∫
DakDbke−m

2
∑∞

k=0[a2k+b2k ] . (40.7)
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Path Integrals – “Normal” BCs

Each of the integrals ak , bk gives∫
Dake−m

2
∑∞

k=0 a
2
k =

∞∏
k=0

√
π

m2
(40.8)

Therefore∫
Dφe−

1
2

∑
k m

2φ(k)φ∗(k) =
∞∏
k=0

(√
π

m2

)2

, (40.9)

=
∞∏

k=−∞

(√
π

m2

)
= e−

1
2

∑
k ln

π
m2 .
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Path Integrals – Conducting Plates BCs

In the case of conducting plates, the imaginary part vanishes, so
instead of∫

DakDbke−m
2
∑∞

k=0[a2k+b2k ] = e−
1
2

∑
k ln

π
m2 (40.10)

we have ∫
Dake−m

2
∑∞

k=0[a2k ] = e−
1
4

∑
k ln

π
m2 . (40.11)

Therefore, we need to adjust the formula (40.1) for the partition
function to

Z = e−
1
4

∑
K ln(K2)

2

. (40.12)
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Partition function

The partition function for the conducting plates becomes from (40.12)

lnZ = −1

2

∑
ωn

∑
k⊥

∑
kz

ln
(
ω2
n + k2⊥ + k2z

)
, (40.13)

where k2⊥ = k2x + k2y

Assuming the conducting plates to be parallel and infinitely large, k⊥
becomes continuous in the large volume limit

We can perform the sum over the Matsubara frequencies as in lecture
6, finding

lnZ = −
∑
k⊥

∑
kz

β
√

k2⊥ + k2z

2
+ ln

(
1− e−β

√
k2
⊥+k2

z

) . (40.14)
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Partition function

Concentrating on the zero temperature limit β →∞, we have

lnZ = −β
2

∑
k⊥

∑
kz

√
k2⊥ + k2z (40.15)

Since kz values are discrete, we have

lnZ = −β
2

∑
k⊥

∞∑
m=−∞

√
k2⊥ +

(mπ
L

)2
(40.16)

If we make the perpendicular directions very large, this becomes

lnZ = −βV⊥
2

∫
d2k⊥
(2π)2

∞∑
m=−∞

√
k2⊥ +

(mπ
L

)2
(40.17)
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Partition function

The integral over k⊥ can be done using the function Φ defined in
lecture 10:

Φ(m,D,A) ≡
∫

dDk

(2π)D
(
k2 + m2

)−A
=

1

(4π)
D
2

Γ
(
A− D

2

)
Γ (A)

(
m2
)−A+D

2 .

(40.18)

We find with D = 2− 2ε, A = −1
2 :

lnZ = +
βV⊥

2

∞∑
m=−∞

1

6π

(
m2π2

L2

) 3
2

= βV⊥

∞∑
m=1

1

6π

(
m2π2

L2

) 3
2

.

(40.19)
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Partition function

The Riemann ζ function is defined as

ζ(s) ≡
∞∑

m=1

1

ms
. (40.20)

Using the ζ-function, we have

lnZ = βV⊥
π3

6πL3

∞∑
m=1

m3 =
βV⊥π

2

6L3
ζ(−3) . (40.21)

Since dim-reg and ζ-function regularization are the same, we can use

ζ(−3) =
1

120
. (40.22)
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Partition function

This leads to

lnZ =
βV⊥π

2

720
L−3 . (40.23)

As a result, the Casimir pressure is

p =
1

β

∂ lnZ

∂V
=

1

βV⊥

∂ lnZ

∂L
=

π2

720

(−3)

L4
. (40.24)

We find the result

p = − π2

240L4
. (40.25)
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Casimir Force

The pressure is negative

The pressure is force per unit area

For a boundary plate area of V⊥, this implies the force per unit area

F

V⊥
= p = − π2

240L4
. (40.26)

The force on the boundary plates is attractive

We can convert to SI units:

F

V⊥
= − π2

240L4
~c ' −1.2× 10−27N

m2

L4
. (40.27)
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Casimir Force

The Casimir force is a prediction from QFT

It has been experimentally verified with high precision experiments,
e.g. in [Mohideen and Roy, PRL81, 1998]
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