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Review

In lecture 35, we discussed QED

One of the precision tests of QED is the anomalous magnetic moment
of the electron, also known as g − 2

In this lecture, we set the stage for calculating the anomalous
magnetic moment, by first calculating g

In future lectures, we will go on to discuss calculating g − 2 in QED
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QED

From lecture 35, we have the QED partition function given by

Z =

∫
DADψ̄DψDc̄Dce−Smatter−Sgauge−Sgf−Sghosts . (41.1)

Here Smatter, Sgauge, Sgf , Sghosts are the matter, gauge, gauge-fixing
and ghost parts of the action

For an electron, the matter fields are Dirac fermions

Requiring the action to be invariant under gauge transformations

Smatter =

∫
x
ψ̄
(
/D + m

)
ψ , (41.2)

where Dµ is the covariant derivative and /A ≡ Aµγ
µ
E
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Gauge Invariance

Under local U(1) gauge transformations

ψ(x)→ e iα(x)ψ(x) , (41.3)

the matter part of the action is invariant if

the covariant derivative is given by

Dµ = ∂µ + iAµ(x) , (41.4)

and the gauge field transforms as

Aµ(x)→ Aµ(x)− ∂µα(x) . (41.5)

In addition to the matter part, also the gauge-part is invariant if

Sgauge =
1

4e2

∫
x
FµνFµν , Fµν = ∂µAν − ∂νAµ . (41.6)
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Field transform

The normalization of the gauge field is arbitrary so far

We can change the normalization of the gauge field by a constant, e.g.

Aµ → eAµ . (41.7)

This will change the relevant parts of the action as

Smatter + Sgauge =

∫
x

[
ψ̄
(
/∂ + m + ie /A

)
ψ +

1

4
FµνFµν

]
(41.8)

We will use this normalization for the action in the following
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Hamiltonian

We calculated the Hamiltonian for a Dirac fermion in lecture 32:

H =

∫
d3xψ̄

(
−iγ i∂i + m

)
ψ (41.9)

Note that here γ i denote the Minkowski gamma matrices

Using the relations (32.12) to Euclidean gamma matrices γEµ we have

H =

∫
d3xψ̄

(
γEi ∂i + m

)
ψ (41.10)

It’s easy to see that this corresponds to part of the matter action
Smatter in (41.8)
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Hamiltonian for QED

The classical Hamiltonian (41.10) is for a single Dirac fermion

For QED, there is a coupling between fermion and gauge field,
according to Smatter, cf. (41.8)

For QED, the relevant classical Hamiltonian contribution is

∆H = ie

∫
d3xψ̄ /Aψ = ie

∫
d3xψ̄γEµψAµ . (41.11)

For simplicity, let’s consider TAG A0 = 0 so that

∆H = ie

∫
d3xψ̄γEi ψAi . (41.12)

Let us rewrite this Hamiltonian contribution in the limit of small Aµ
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Gordon Identity

If the gauge field amplitude is small, then the classical fermions fulfill
the Dirac equation,

(iγµ∂µ −m)ψ = 0 . (41.13)

For time-independent fields ψ = ψ(~x) and using Eulidean γ matrices,
we thus have

mψ = −γ iE∂iψ (41.14)

Taking the Hermitian conjugate, and using γ i†E = γ iE we have

mψ̄ =
(
∂i ψ̄
)
γ iE . (41.15)
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Gordon Identity

Multiplying these equations by ψ̄γjE and γjEψ from left and right,
respectively, gives

mψ̄γjEψ = −ψ̄γjEγ
i
E∂iψ ,

mψ̄γjEψ =
(
∂i ψ̄
)
γ iEγ

j
Eψ . (41.16)

Summing these then leads to the Gordon identity

ψ̄γjEψ =
1

2m

[(
∂i ψ̄
)
γ iEγ

j
Eψ − ψ̄γ

j
Eγ

i
E∂iψ

]
(41.17)

The identity can be simplified by using σij = i
2

[
γ iE , γ

j
E

]
:

γ iEγ
j
E =

1

2

{
γ iE , γ

j
E

}
+

1

2

[
γ iE , γ

j
E

]
= δij − iσij . (41.18)
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Hamiltonian Contribution

We get for the Gordon identity:

ψ̄γjEψ =
1

2m

[(
∂j ψ̄
)
ψ − ψ̄∂jψ − i∂i

(
ψ̄σijψ

)]
(41.19)

As a consequence, the Hamiltonian contribution (41.12) becomes

∆H =
ie

2m

∫
d3x

[(
∂j ψ̄
)
ψ − ψ̄∂jψ

]
Aj +

e

2m

∫
d3x∂i

(
ψ̄σijψ

)
Aj .

(41.20)

For now, we are not interested in the first part. Instead, we focus on

∆Hspin−orbit = − e

2m

∫
d3xψ̄σijψ

1

2
Fij . (41.21)
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Hamiltonian Contribution

We can consider ∆Hspin−orbit for an external constant magnetic field
B3 = F12

In this case

∆Hspin−orbit = −µB
∫

d3xψ̄σ12ψB3 . (41.22)

where we have introduced the Bohr-magneton

µB =
e

2m
. (41.23)

Now

σ12 =
i

2

[
γ1E , γ

2
E

]
= −

(
σ3 0
0 σ3

)
. (41.24)
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Spin-Orbit Interaction

For a fermion, being a spin-12 particle the spin operator is

S3 =
1

2

(
σ3 0
0 σ3

)
(41.25)

Using the spin-operator, the Hamiltonian contribution becomes

∆Hspin−orbit = 2µB

∫
d3xψ̄~S · ~Bψ . (41.26)

The non-trivial pre-factor 2 is the magnetic moment of the Dirac
particle

It is customarily denoted as g and called “g-factor”
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From classical to quantum

While our treatment was relativistic, and contained fermions, it
nevertheless did not contain any true quantum field theory effects

For this reason, the result g = 2 is a classical approximation to the
actual g-factor

The deviation from g = 2 is called the anomalous contribution to the
magnetic moment (though there is nothing anomalous about it)

We will consider one-loop QFT approximations for g − 2 in the next
lectures
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