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Review

@ In lecture 35, we discussed QED

@ One of the precision tests of QED is the anomalous magnetic moment
of the electron, also known as g — 2

@ In this lecture, we set the stage for calculating the anomalous
magnetic moment, by first calculating g

@ In future lectures, we will go on to discuss calculating g — 2 in QED
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|
QED

@ From lecture 35, we have the QED partition function given by
7 = /DA’DJJDwDED(_.e—Smatter—sgauge— af —Sghosts . (41_1)

@ Here Spatter, Sgauge: Sef, Sghosts are the matter, gauge, gauge-fixing
and ghost parts of the action

@ For an electron, the matter fields are Dirac fermions

@ Requiring the action to be invariant under gauge transformations
Smatter = /@Z (m + m) ¢7 (412)
X
where D, is the covariant derivative and A= Aufy,’j-
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Gauge Invariance

Under local U(1) gauge transformations
Y(x) = e (x), (41.3)

the matter part of the action is invariant if
@ the covariant derivative is given by

D, =0, + iAu(x), (41.4)

@ and the gauge field transforms as

Au(x) = Au(x) — Opa(x) . (41.5)

@ In addition to the matter part, also the gauge-part is invariant if

1
Sgauge = de ) /F Fu,j, F/“’ = auAl/ - al/Au . (416)
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Field transform

@ The normalization of the gauge field is arbitrary so far

@ We can change the normalization of the gauge field by a constant, e.g.

A, — €A, (41.7)
@ This will change the relevant parts of the action as

Smatter + Sgauge = /

X

[1/7 (F+ m+ ied) v + %FWF,W (41.8)

@ We will use this normalization for the action in the following
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Hamiltonian

@ We calculated the Hamiltonian for a Dirac fermion in lecture 32:

H = /d3xzz (=iv'0; + m) 1 (41.9)

o Note that here 4 denote the Minkowski gamma matrices

@ Using the relations (32.12) to Euclidean gamma matrices fyf we have

H= / &3xi) (V,Ea,- + m) " (41.10)

@ It's easy to see that this corresponds to part of the matter action
Smatter in (418)
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.
Hamiltonian for QED

@ The classical Hamiltonian (41.10) is for a single Dirac fermion

@ For QED, there is a coupling between fermion and gauge field,
according to Spmatter, cf- (41.8)

@ For QED, the relevant classical Hamiltonian contribution is

AH = ie / d3xp A = ie / PxipyfvA,. (41.11)

@ For simplicity, let’s consider TAG Ay = 0 so that

AH = ie / d3xpyEpA; . (41.12)

@ Let us rewrite this Hamiltonian contribution in the limit of small A,
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-
Gordon ldentity

o If the gauge field amplitude is small, then the classical fermions fulfill
the Dirac equation,
(iv'Oy —m)y =0. (41.13)

e For time-independent fields 1) = 1)(X) and using Eulidean y matrices,
we thus have

mp = —yEdpp (41.14)
it

@ Taking the Hermitian conjugate, and using vy = ,),L_ we have

mp = ((‘3,-1/_1) yE. (41.15)
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-
Gordon ldentity

e Multiplying these equations by 7/_)715 and q/Ez/) from left and right,
respectively, gives

mpyEy = —prEyEdb,
mpyy = (9i) VeV (41.16)

@ Summing these then leads to the Gordon identity

Pkt = o [(08) vk — Brrony] (41.17)

2m

o The identity can be simplified by using o/ = § [VE,WJE}:
’YE’YJE ~ 95 {’YE7’YJE} + 2 [7E7'YJE] =46Y —io". (41.18)
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Hamiltonian Contribution

@ We get for the Gordon identity:

Byt = o [(0F) 6 — Do — 0y (Bow)]  (4119)

@ As a consequence, the Hamiltonian contribution (41.12) becomes

AH = % / d3x [(8;9) v — D] A + % / d*x0; (Po) A; .
(41.20)

@ For now, we are not interested in the first part. Instead, we focus on

e

AHspinforbit — _
2m

/d&%%iﬁ. (41.21)
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Hamiltonian Contribution

@ We can consider AHPIn=otbit for an external constant magnetic field

B3 = F12

@ In this case

AHspin—orbit = —up / d3X@Z0'121,Z)B3 )

where we have introduced the Bohr-magneton

o Now

g
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.
Spin-Orbit Interaction

@ For a fermion, being a spin—% particle the spin operator is

103 O
S3 = 5 < 0 ) (41.25)

03
@ Using the spin-operator, the Hamiltonian contribution becomes
AHPRObIt — o) p / d3xpS - Bip . (41.26)

@ The non-trivial pre-factor 2 is the magnetic moment of the Dirac
particle

@ It is customarily denoted as g and called “g-factor”
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From classical to quantum

@ While our treatment was relativistic, and contained fermions, it
nevertheless did not contain any true quantum field theory effects

@ For this reason, the result g = 2 is a classical approximation to the
actual g-factor

@ The deviation from g = 2 is called the anomalous contribution to the
magnetic moment (though there is nothing anomalous about it)

@ We will consider one-loop QFT approximations for g — 2 in the next
lectures
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