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Review

@ In lecture 43, we derived the amputated photon-electron vertex in
QED

@ A part of the result was the photon propagator
G (x) = (Au(x)A(0)) (45.1)

in the free theory

o We discussed the U(1) partition function in lecture 36, which we will
use as a starting point
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N
The Partition Function

@ The partition function for the U(1) gauge field was given in lecture 36
as

Z= / DADEDce ™ Semuze i ~Sghost | (45.2)
@ Here
1 1 _0G[A
Sgauge:4/l:,3uv ng:%/GQ[A], Sghost:/c 36[)4](:7
(45.3)

where F,, = 0,A, — 0,A,, G[A] an arbitrary gauge-fixing condition,
and & an arbitrary gauge-fixing parameter
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-
The Propagator

@ Similar to the partition function, the free photon propagator is given
by

| DADEDCA,,(x)A, (0)e Samuze St ~Sghost

GW(X) 7

(45.4)

@ Not surprisingly, the form of the propagator depends on the choice of
the gauge-fixing condition G[A]

@ In the following, we will consider so-called covariant gauges, e.g.

GIA] = 0,A, . (45.5)
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Covariant Gauges

e Within the class of covariant gauges, the ghosts decouple for a U(1)
gauge theory as in lecture 36

@ We have for the propagator

[ DAA,(x)A, (0)e ™ Ssavze st
GAU'V(X) = ZA Y

(45.6)

where Zs = [ DAe™ Seause— S
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Fourier Transform

@ We can perform a Fourier transform of the gauge field:

A(x) = ; S e A, (K) (45.7)
K

@ The gauge-field part of the partition function then becomes (cf 36.9)

7= / DAe 7 S AulK)Mu (K)AL(—K) (45.8)
where 1
M, (K) = K20, — KKy, + EKMKV (45.9)
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-
Propagator

@ The Fourier-transformed propagator becomes

f'DAA )JAL(Q)e™ 37 2k Au(K)Myuw (K)AL (=K)
NV V Z ZA ,
(45.10)
@ Since the integral is Gaussian, we have
. - 4
DAA,(P)A,(Q e‘WZK 1 (KYM,w (K)AL (—K) \/
J DAAL(P)AL(Q) > Y stp + QP
(45.11)
@ Hence
Gu(P) = M,/ (P). (45.12)
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-
Propagator

@ We can calculate the inverse of the matrix M, using the projectors,

cf (36.11)
K, K K, K
T _ phy L _ Ruhy
le = — 2 Pm/ =2 (45.13)
e From M = K2pPT + K{PL we have
ML (K) = = PT + 5 pL 45.14
,u,u( )_W ;LV+W 77 ( . )
@ Therefore, we have
O PP,
Guw(P) = ﬁ +(€£-1) 24 (45.15)
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Feynman Gauge

@ Recall that the parameter £ is arbitrary

@ Physical observables cannot depend on &, so independence wrt £ can
be used as a check on calculations

@ Conversely, if we trust our ability to correctly do calculations, we may
choose a convenient value of £

@ A particularly convenient value is £ = 1, also called “Feynman gauge”

@ In Feynman gauge, the propagator becomes

_ '™
G (P) =55 (45.16)
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