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Review

In lecture 43, we derived the amputated photon-electron vertex in
QED

A part of the result was the photon propagator

Gµν(x) ≡ 〈Aµ(x)Aν(0)〉 (45.1)

in the free theory

We discussed the U(1) partition function in lecture 36, which we will
use as a starting point
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The Partition Function

The partition function for the U(1) gauge field was given in lecture 36
as

Z =

∫
DADc̄Dce−Sgauge−Sgf−Sghost . (45.2)

Here

Sgauge =
1

4

∫
x
F 2
µν , Sgf =

1

2ξ

∫
x
G 2[A] , Sghost =

∫
x
c̄
∂G [A]

∂α
c ,

(45.3)
where Fµν = ∂µAν − ∂νAµ, G [A] an arbitrary gauge-fixing condition,
and ξ an arbitrary gauge-fixing parameter
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The Propagator

Similar to the partition function, the free photon propagator is given
by

Gµν(x) =

∫
DADc̄DcAµ(x)Aν(0)e−Sgauge−Sgf−Sghost

Z
(45.4)

Not surprisingly, the form of the propagator depends on the choice of
the gauge-fixing condition G [A]

In the following, we will consider so-called covariant gauges, e.g.

G [A] = ∂µAµ . (45.5)
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Covariant Gauges

Within the class of covariant gauges, the ghosts decouple for a U(1)
gauge theory as in lecture 36

We have for the propagator

Gµν(x) =

∫
DAAµ(x)Aν(0)e−Sgauge−Sgf

ZA
, (45.6)

where ZA =
∫
DAe−Sgauge−Sgf
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Fourier Transform

We can perform a Fourier transform of the gauge field:

Aµ(x) =
T

V

∑
K

e iK ·x Ãµ(K ) (45.7)

The gauge-field part of the partition function then becomes (cf 36.9)

ZA =

∫
DÃe−

T
2V

∑
K Ãµ(K)Mµν(K)Ãν(−K) , (45.8)

where

Mµν(K ) = K 2δµν − KµKν +
1

ξ
KµKν (45.9)
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Propagator

The Fourier-transformed propagator becomes

Gµν(P) =
T

V

∑
Q

∫
DÃÃµ(P)Aν(Q)e−

T
2V

∑
K Ãµ(K)Mµν(K)Ãν(−K)

ZA
,

(45.10)

Since the integral is Gaussian, we have∫
DÃÃµ(P)Aν(Q)e−

T
2V

∑
K Ãµ(K)Mµν(K)Ãν(−K)

ZA
=

V

T
δ(P + Q)M−1

µν (P)

(45.11)

Hence
Gµν(P) = M−1

µν (P) . (45.12)

paul.romatschke@colorado.edu Lecture 45 Fall 2020 7 / 9



Propagator

We can calculate the inverse of the matrix Mµν using the projectors,
cf (36.11)

PT
µν = δµν −

KµKν

K 2
, PL

µν =
KµKν

K 2
. (45.13)

From M = K 2PT + K2

ξ PL we have

M−1
µν (K ) =

1

K 2
PT
µν +

ξ

K 2
PL
µν (45.14)

Therefore, we have

Gµν(P) =
δµν
P2

+ (ξ − 1)
PµPν

P4
(45.15)
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Feynman Gauge

Recall that the parameter ξ is arbitrary

Physical observables cannot depend on ξ, so independence wrt ξ can
be used as a check on calculations

Conversely, if we trust our ability to correctly do calculations, we may
choose a convenient value of ξ

A particularly convenient value is ξ = 1, also called “Feynman gauge”

In Feynman gauge, the propagator becomes

G ξ=1
µν (P) =

δµν
P2

. (45.16)
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