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Review

@ In lecture 42, we discussed that g-2 is related to the connected and
amputated photon-electron vertex ;"""
@ In lecture 46, we derived the result

1
N
[(3)conmamp.(p ply = _2je /O dx1 dxo /K T)g’ (48.1)

@ The explicit expressions for N,,, D can be found in eqns. (46.18) in
lecture 46

@ The amputated vertex is sandwiched between two free fermion
propagators,

Spr rE?),conn.,amp.(P’ PI)SP (482)

@ In lecture 47, we discussed that the contribution K'ml;(’ in N, does
not contribute to g — 2
@ In this lecture, we will finish our calculation of g-2
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K-integration

@ The parts of N, contributing to g-2 are given by

Ny, = =247, — 2m27# —4m(ar, + ax) (48.3)

@ The form of the denominator is given by D = K2 + A, where on-shell
A= m?(x; + x)* + x10 Q2. (48.4)

and Q, = P, — Py.
@ The K-integration is straightforward using the method from lecture
10:

=

No o 1 Ny
« D3 204m)2 A

(48.5)
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Relevant vertex

@ One finds for the part of the vertex relevant for g-2:

_ ie> /1 doxr e 28,y + 2mPy,, + 4m(ay, + a2,)
o 16m2 o 1o m?(x1 + x2)? + x1x0 Q?

(48.6)

@ Now we use the fact that I, is sandwiched between propagators
(48.2),

@ For instance,

#5(P) = (bl +i(1-x)P)S(P),

- (mx1 +i(l - X2)P’) S(P), (48.7)
because _
iPS(P) = ,Plfm =1-mS(P). (48.8)
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Gamma gymnastics
o Next, pull through v,:

Yupy = <mx1'yu +2i(1— XZ)PL —(1- X2)”P,’Yu> (48.9)

@ We can do a similar trick with 4, acting to the left so that

Aovudy = (I(1=x0)P + mx2) Yudy

= (1) (maiPy, —2im(1 — x)Pl — (1 - x)iPiP',)
+mxa (mxiy, + 2i(1 — x2) Py, + m(1 — x2)y,)

= (1—x1)(=2im(1 = x2)P,, — m(1 = x1 — x2)i Py,.)
+mx (2i(1 — x2) P}, + m(1 + x1 — x2)7,)
+2(1 = x1)(1 — x2)P - P'v, (48.10)
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Gamma gymnastics cnt'ed

@ In the next step we have

Aoyudy — (1 —x1) (—2im(1 - XZ)'DL —mP(1—x — X2) V)
=2m(1 —x1)(1 — x1 — x2)iP,
+mxa (2i(1 — x2) Py, + m(1 + x1 — x2)7,)
+2(1 = x1)(1 — x)P - P'v,
= —m27# (1 +x2 + x5 —2x1 — 2X2)
+2(1 = x1)(1 — x2)P - P'v,
—2imPL(1 — X2)(]. — X1 — X2)
—2imP,(1 — x1)(1 — x1 — x2) (48.11)

paul.romatschke@colorado.edu Lecture 48 Fall 2020 6 /13



Vertex Numerator

@ Plugging this result into the numerator (48.3), we have

N, =

@ Now write

2P. P = [~

and

’Du
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2m27u (X12 + x22 —2x1 — 2X2)
—4(1 = x1)(1 — x2)P - Py,

+4imP/ (1 — x2)(1 — x1 — x2)
+4imP,(1 — x1)(1 — x1 — x2)

—4imP,, (1 — 2x;) — 4imP,(1 — 2x2) .

QQ+P2+P/2] — [—Q2—2m2]

[y

=5 (P4 P 5 (P =P
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N
Vertex Numerator

@ This gives
N, = 2m2'y# (X12 + x5 — 2x1 — 2x2)
21— x1)(1 — x2) (@ +2m2) 7,
+2im (PL + PM) (x12 + x22 + 2x1X0 — X1 — x2)
—2im (P' — 'Du) (x12 — x22 + x1 — x2)

@ This expression can be simplified using x3 = 1 — x; — x by noting that
X12 + x22 +2x1X0 — X1 — Xp = X32 — X3 (48.15)
such that
N, = 2m?y, (2 +2x3 — 1) +2(1 — x1)(1 — %) Q%
+2im (P;L + Py) (X—f — x3)
—2im (P' = P,) (x} — >3 +x1 — x2) (48.16)
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Symmetries of the integrand

e From (48.6), we now have

-3
ie N,

1
M = ——— dxy d. .
" 167‘(‘2/ e X1+ x2)2 + x1% Q2
0

(48.17)

@ Since the denominator and measure are invariant under x; <> xo, the
last term in (48.16) cancels out

@ For g-2 we are looking for a contribution that is linear in @, so the
term proportional to Q? also drops out

@ We are left with

_ ie3 /1 o 2m2’yu (1 — 2x3 — X32) +2im (PL + Pu) (X3 — x32)
B 16m2 1572 m?(x1 + x2)? + x1.x2 Q?
(48.18)
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-
Gordon identity

e We now use the Gordon identity in momentum space (42.12) to

replace
i(P, + Pu) = —2my, + 0, Qy (48.19)

@ Only the term proportional to o, will contribute to g-2
@ Using the Gordon identity in (48.18), we have for the part of the
vertex relevant for g-2:

ie3 [l 2mo,, Qy (x3 — x3)
— = | dxd a 3/ 48.20
o 16m2 /0 e m2(x1 + x2)2 + x1x2 Q2 ( )

e Comparing this with the definition of the vertex (42.10)
e
" 2m
we find an expression for the form factor F;
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Form Factor F

@ We find for the form factor F»:

F(Q%) = < /1 dX1dX2( bs = x5) . (4822)

472 X1+ x2)? + x1x0 Q% / m?

@ Rewrite using fol dx36(1 — x; — xo — x3) and do xp-integration

2l (x3 —x3)
2 3
F(Q%) = 472 / dxldx3(1 —x3)2+x1(1 — x1 — x3)Q?/m?
(48.23)
e Write x; = (1 — x3)y to find
o i ! x3 (1 — x3)°
RQ) = 4z |, 909 (e o107
(48.24)

paul.romatschke@colorado.edu Lecture 48 Fall 2020 11 /13



Form Factor F

@ Perform the integral over x3:

, &2 ol 1
F2(Q7) = o 2/ dy1+y(1_y)Q2/m2. (48.25)

o Recall from lecture 42 that we only need F»(0) for g-2:
o We get

g—2=2RL0)=—= (48.20)

_ # . . g
@ Here o = 137,036 IS the fine-structure constant
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N
g-2

o Expressing g-2 as
g—-2=2(1+a), (48.27)

our calculation gives

a= - ~0.00116141. (48.28)
27

@ A recent experimental value [Hanneke et al. 2008] gives

a = 0.00115965218073(28) . (48.29)

@ Our calculation agrees with experiment to 3 significant digits!
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