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Abstract

The standard approach for the risk neutral pricing of correlation products such as CDOs
is to apply a one factor Gaussian copula model with certain variations. This model can
be expressed as an average over scenarios where, conditional on a parameter, default time
distributions for different obligors are independent. Using this description I show that the
Gaussian copula approach leads to certain predictions concerning relative changes of de-
fault probabilities that are not only counterintuitive but also in disagreement with market
data. These problems can be avoided within the framework of conditional independence
by changing the forms of the conditional default time probability distributions away from
what is dictated by the Gaussian copula assumption. This leads to a class of models
that do not require modifications such as using the base correlation technique; this class
contains the model recently suggested by Hull and White.
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Remarks on pricing correlation products

Harald Skarke

1 General considerations and the present market stan-

dard

For the pricing of a structured product involving several credits, such as a tranche of a
synthetic CDO or CDO–squared, or an n-th to default basket, it is not sufficient to have
only the spread curves for the individual obligors. In addition, one has to account for the
fact that the patterns of defaults and spread movements of the individual credits are not
independent. With tranched indices such as iTraxx and CDX, one now has information
on the market perception of these dependencies. It is an important problem to implement
this data in a consistent way into a risk neutral pricing scheme.

In the following I shall make a number of simplifying assumptions. I ignore recovery
rates – this is justified, for example, if we assume a fixed recovery for every CDS. I also
assume that a single tranched index is used.

For the pricing of a correlation product it is sufficient to have a joint probability
distribution F(t1, . . . , tN) for the default times t1, . . . , tN of the N credit default swaps
referenced by the deal. The pricing then becomes a two step process,

Individual data
Correlation data

}

−→ Joint distribution −→ Price (1)

The second step (distribution → price) is the standard calculation of expected values on
loss and premium legs and will not be considered here. Note that the current standard
practice for quoting CDO correlation data, namely the base correlation technique, is not
of the type (1) as it works without having a generally valid joint distribution. A method
for constructing such a distribution can lead to a consistent pricing method only if it
obeys the following conditions.

• Consistency with individual data: the marginal distributions of F should be the
distributions F1(t1), . . . , FN(tN) implied by the spread curves (and recovery assump-
tions) corresponding to obligors 1, . . . , N .

• Consistency with correlation data: if the method is applied to the index portfolio,
it should lead to the correct index tranche prices.

The first of these conditions is equivalent to the statement that

F̃(u1, . . . , uN) := F(F−1
1 (u1), . . . , F

−1
N (uN)) (2)
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is a copula function; conversely, a copula function F̃ implies a distribution F via F(t1, . . . , tN) =
F̃(F1(t1), . . . , FN(tN )). A standard approach for constructing copula functions is to take
some well known multivariate distribution together with its marginal distributions and
then to apply a transformation like the one above. The most commonly used copula
function of this type is the Gaussian copula

F̃Gaussian(u1, . . . , uN) := Φ0,Σ(Φ−1(u1), . . . , Φ
−1(uN)), (3)

where Φ denotes the normalized Gaussian distribution and Φ0,Σ is the multivariate Gaus-
sian with mean zero and correlation matrix Σ. For the pricing of CDO tranches, this
approach is further narrowed down to using a correlation matrix where all mutual cor-
relation numbers (i.e., all off-diagonal entries of Σ) have the same value ρ. In this case
it turns out that the joint distribution F can be described in terms of a one parameter
family of scenarios such that in each specific scenario the distributions for the individual
oligors are independent:

dF =

∫

dF1(t1|V ) . . . dFN(tN |V ) dG(V ) (4)

(the integral referring to dG(V ) only). The conditional probabilities

Fi(ti|V ) = Φ

(

Φ−1(Fi(ti)) −
√

ρV√
1 − ρ

)

(5)

depend on a random variable V that is normally distributed,

G(V ) = Φ(V ). (6)

If we work with a fixed time horizon, e.g. the termination date T of the deal that we want
to price, we can interpret V as a variable describing general economic conditions during
the interval [0, T ] in such a way that a large V means good economic conditions, hence
low default probabilities; i.e., the Fi(ti|V ) are monotonically decreasing in V .

The strength of the method lies in the fact that due to the conditional independence
of the Fi(ti|V ) as exhibited in formula (4) efficient numerical methods are available. On
the other hand this approach, as it is, simply does not work. With any choice of the
correlation ρ at least some of the index tranches are priced very wrongly. Currently,
there seem to be two major strategies for overcoming this problem. One of them uses the
concept of ‘base correlation’ for the pricing of CDO tranches [3]. In this approach only
tranches with an attachment point of zero are priced according to the scheme outlined
above, with different correlation levels for different detachment points. A tranche with
attachment point a and detachment point d is then priced as the difference between two
tranches with attachment point 0 and detachment points d and a, respectively. While
this seems to give reasonable results for a non–standard tranche of a portfolio that is very
similar to the index portfolio, it is not quite clear how the base correlation data should be
mapped between portfolios with different characteristics. Another disadvantage of base
correlation is the fact that it uses explicitly the structure of the CDO in such a way that
it cannot work for other structures such as, e.g., CDO-squareds. A different approach [1]
introduces a number of extra parameters to make the correlation V –dependent; in this
way it is possible to reproduce what is known as the correlation smile or skew.
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2 Further problems with the Gaussian copula

Let us now explore the following questions. What can we say about eq. (4) in general?
And given eq. (4), what are the implications of choosing the particular forms of eqs. (5)
and (6)? Applying the first of the two consistency conditions given above to eq. (4) leads
to

∫

Fi(ti|V )dG(V ) = Fi(ti). (7)

Note that the shape of the function G(V ) has no meaning per se since we can always
transform to a different function G̃(Ṽ ) via using Ṽ = G̃−1(G(V )), provided we change
Fi(ti|V ) to

F̃i(ti|Ṽ ) = Fi(ti|V (Ṽ )) with V (Ṽ ) = G−1(G̃(Ṽ )). (8)

Consider the default probability Fi(T |V ) of obligor i during the lifetime [0, T ] of the
deal, conditional on V . It exhibits a relative change proportional to

βi := − 1

Fi(T |V )

∂Fi(T |V )

∂V
(9)

under a small change of V . I have included the minus sign because of the negative
dependency of Fi(T |V ) on V (the state of the economy) whereas in general “betas” are
rather thought of as the tendency of a certain spread to move with the average spread,
which should be negatively correlated with the state of the economy. Given the above
argument about the scaling of V , a single βi is not a very meaningful number per se, but
the quotient βi/βj for two different credits is independent of such a rescaling and gives a
clear indication of which of the default probabilities is expected to change more under a
change of V . For the case (5) of the Gaussian copula, one finds

βi =

√
ρ√

1 − ρ
φ

(

Φ−1(Fi(T )) −√
ρV√

1 − ρ

) /

Φ

(

Φ−1(Fi(T )) −√
ρV√

1 − ρ

)

, (10)

so the behaviour of βi is dominated by the function φ(x)/Φ(x). This function is actually
decreasing, implying that the default probability of a riskier obligor should exhibit a
smaller relative change under a change of V than the default probability of a less risky
one. For example, the relative change for an obligor with 0.5% default risk should be
more than twice that of an obligor with 20% default risk. This is in contradiction to the
general belief that high spread companies are more likely to default because of economic
conditions whereas low spread companies are expected to default, if they do so at all,
because of idiosyncratic risk factors such as fraud.

The behaviour (10) of the Gaussian copula is also in quantitative disagreement with
market data, as the following argument shows. I have used data for the iTraxx series 2
from January 2004 to mid March 2005 in the following way. For each of the 125 credit
default swaps, I have calculated the regression line for the relative movement of the spread
si,t (i indexing the credit and t denoting time in days) over the relative movement of the
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average spread of the iTraxx portfolio, using time steps of one week; in formulas, the
regression was for

yi,t =
si,t − si,t−7

(si,t + si,t−7)/2
over xt =

at − at−7

(at + at−7)/2
with at =

1

125

125
∑

i=1

si,t. (11)

Let us call the slopes of these lines empirical betas. It turns out that of the 125 empirical
betas, exactly one is negative and one is larger than two, the remaining 123 being in
the range (0,2). If we interpret a movement of the average spread of the index roughly
as a change in the market participants’ perception of the distribution of V , then the
application of the Gaussian copula would indicate that high spread names should have,
on average, lower betas than low spread names. Exactly the opposite is true. The single
obligor with negative beta (of -0.03) has a spread of 11.7 bp, the single obligor with a
beta of more than two (2.09, to be precise) has a spread of 105.4 bp. The twenty smallest
spread names all have betas less than one, and the four names with spreads larger than
80 bp all have betas greater than one. A linear regression, this time for the empirical
betas over the logarithms of time averaged spreads, has a positive slope of 0.36.

These problems are not addressed by the two aforementioned variations on the Gaus-
sian copula approach. While this should not matter too much if the portfolio underlying
the deal that is to be priced is very similar to the index portfolio, it severely affects the
ability of these approaches to cover wider ranges of, for example, average spreads.

3 Suggestions for improvements

So, how can we improve the situation? Clearly, the values (9) for the betas should be-
come different from those implied by (10). This can only be achieved if we depart from
the specific form (5) of the conditional probabilities. The simplest possible modification
would be to demand that all betas be equal. This does not work for formula (9) as it
stands because of the limitation Fi(T |V ) ∈ [0, 1]. It does work, however, if we replace the
probabilities Fi(t|V ) by intensities (hazard rates) hi(t|V ) — for small default probabili-
ties, relative changes in the hazard rates will lead to approximately proportional relative
changes in the default probabilites

Fi(t) = 1 − e−
R

t

0
h(t̃)dt̃ ≈

∫ t

0

h(t̃)dt̃, (12)

so we do get the desired behaviour. Using our freedom in reparametrizing V , we can set
the βi to 1 which results in

hi(t|V ) = h0
i (t)e

−V . (13)

Then one has to choose the h0
i (t) and G(V ) in such a way that the consistency condition

(7), which becomes

1 −
∫

e−
R

t

0
h0

i
(t̃)e−V dt̃dG(V ) = Fi(t), (14)
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is obeyed, and that the model reproduces the prices of the index tranches. This corre-
sponds more or less to a model that was, unfortunately for the present author, suggested
recently by Hull and White [2]. To see this, transform to Ṽ = e−V , which is what Hull
and White denote by λ. Somewhat confusingly, in their paper λ rather than hi is time de-
pendent, which would not allow to choose the time dependenies for the different obligors’
default intensities independently; this would actually lead to a violation of the consistency
condition (7).

A simple variation of this is to allow different constant betas for different credits,
resulting in

hi(t|V ) = h0
i (t)e

−βiV . (15)

In that case one could either use historically observed betas (but with caution, given the
short time span of observations), or one could make a simple adjustment to take into
account the fact that larger spreads tend to lead to larger betas. In general there is
of course an infinity of different choices for hi(t|V ) or Fi(t|V ) and G(V ) that obey the
consistency conditions, with many of them performing better than the Gaussian copula;
the choices (13) and (15) are just very simple examples.

The calibration of such a model will certainly pose a number of technical problems, but
none of them should be too difficult to overcome. Here it may be very useful to exploit
the possibility of rescaling V . In practice one will probably choose some very simple
functions (e.g., piecewise linear) for the Fi(t|V ) or hi(t|V ), and a discrete distribution for
V . One such possibility for the latter would be to define V as the number of defaults
in the index portfolio, implying that Fi(t|V ) is the default time distribution for the i’th
credit conditional on the index exhibiting V defaults in [0, T ]. For models of the types
(13) and (15) some iterative procedure, starting with h0

i that are just the hazard rates
implied from the input data, should work well.
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