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Lecture 9 Inflation - part I

Having discussed the thermal history of our universe and in particular its evolution at times
larger than 10−14 seconds after the big bang, we will now venture even closer to the initial
singularity and discuss the theory of inflation. We will first layout the original problems that
cosmologists were facing before Guth, Linde, Albrecht and Steinhardt invented inflation in
the 1980’s. Then we explain how inflation solves these problems.

1 Beyond ΛCDM

To describe the evolution of our universe so far we have been able to use well tested particle
and nuclear physics and two extra ingredients: the cosmological constant Λ and cold dark
matter (CDM), where cold refers to the fact that this matter behaves like non-relativistic
matter with equation of state parameter w = 0. This so called ΛCDM model seems to
correctly describe the evolution of our universe from 10−14 seconds after the big bang until
today. However, we have already seen that there has to be something else that we don’t
understand yet: The asymmetry between matter and anti-matter requires processes in the
earlier universe that go beyond the standard model of particle physics. In addition it seems
that our universe underwent a period of inflation during very early times. While experiments
provide us with ever improving bounds on different inflationary models, they have not yet
singled out one particular model of inflation so we will discuss a variety of different models and
their features. Since the theory of inflation is less well tested, we should ask what its generic
predictions are and which of those we observe. As discussed above, cosmologists up until
1980 were faced with some problems that get resolved, if our very early universe underwent
a period of inflation. However, the absence of these problems is then not a prediction but
rather a post-diction of inflation since it was invented to resolve these issues. Does inflation
make in addition any generic predictions that we can test? Yes, as we discuss at the end of
this course, all inflationary models predict a nearly scale invariant spectrum for the density
perturbation that are tiny deviations from an entirely homogeneous universe. The imprint
of these density perturbations has been observed in the cosmic microwave background. So it
is fair to say that the observational evidences for the theory inflation are pretty robust and
our universe most likely underwent such a phase at a time that could be as early as 10−34

seconds after the big bang.

1.1 The horizon problem

The first problem in an early universe that is only dominated by radiation and matter is
called the horizon problem. Recall that the photons of the cosmic microwave background
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decoupled 380,000 years after the big bang and they constitute the best black body spectrum
ever observed in nature. This black body spectrum has the same temperature everywhere
in the sky. In particular this means that all the photons that come to us from one side have
the same temperature as the photons that come from the opposite side. This seems only
possible, if these photons have been in causal contact with each other so that they can be
in thermal equilibrium. We have previously discussed that there are abundant interactions
in the early universe that establish a local equilibrium but we haven’t discussed the size of
these local patches in equilibrium. In order to do so, it is useful to work again with conformal
time τ .

Recall from the beginning of lecture 4 that the metric in conformal times is given by

ds2 = a(τ)2
(
−dτ 2 +

dr2

1−Kr2
+ r2dΩ

)
, (1)

and a radially traveling light ray satisfies

ds = 0 ⇒ dτ =
dr√

1−Kr2
≡ dχ . (2)

In particular this means that in the (χ, τ)-plane light rays travel along straight lines at 45◦

angles. For each point P in the (χ, τ)-plane we can draw a future light-cone and a past
light-cone by drawing two straight lines at ±45◦ angles that intersect in P . Every point in
spacetime inside the past light-cone can send information to the point P and every point in
the future light-cone can receive information from the point P . We have already discussed
these kind of causally connected parts in lecture 4. The radius of the future light-cone is the
event horizon and the radius of the past light-cone is the particle horizon (see figure 1).

Figure 1: The future and past light-cone associated to the point P .

The question we have to ask is whether all the points on the surface of last scattering
that we observe today have been in causal contact or not? The answer is no! This means
that in an early universe that is radiation dominated the photons that are coming from one
side of the universe and are reaching us today have never been in causal contact with the
photons coming from the other side of the universe. So why are they both having the same
temperature? This is the horizon problem and is depicted in figure 2.
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Figure 2: The point P1 and P2 have past light-cones that do not intersect so these two points
have never been in causal contact. The blue cone is the future light-cone of one point on the
initial singular surface and the red line shows the maximal surface size that could have been
in causal contact.

The initial singularity with a(τ = 0) = 0 has non-zero (and maybe even infinite) comoving
spatial size. If we assume that the points on this initial surface are not particularly fine
tuned to have all the same initial conditions then we expect thermal equilibrium to lead
to the same temperature only for rather small patches of the sky. A simple calculation
for our universe reveals that only photons coming from within a 2◦ angle should be in
thermal equilibrium. This means that the surface of last scattering should consist of roughly
4π/(2◦ ∗ 2π/360◦)2 ≈ 104 different patches that have not been in thermal equilibrium.

We will see later that there are actually small fluctuations in the temperature of the CMB
of the order of .01%. While this is incredibly small, it raises the question of how different
causally disconnected patches would have to be in order not to worry about the fine tuning
of the initial surface. A natural expectation would be a change of temperature between
different regions of the order of 1K, i.e. of the order of TCMB,0 = 2.725K. Additionally, once
we know about these small fluctuations in the CMB then there is actually an even better
posed horizon problem: The fluctuations in the temperature are correlated on scales much
larger than 2◦, so how is this possible, if these regions have not been in causal contact?

1.2 The flatness problem

The second problem is also related to fine tuning. Recall from lecture 3 that the curvature
contribution to the energy density of our universe is very small. This means that the nor-
malized total energy density today is ΩT ≈ 1. More specifically from equation (4) and (2)
in the lecture 3 notes we have

ΩT − 1 =
K

ȧ(t)2
=

3K

8πGρc(t) a(t)2
. (3)

Today the experimental bounds is

K

ȧ(t0)2
< .005 . (4)

Let us look at the last term in equation (3). If the energy density is dominated by a
cosmological constant then ρc(t) is constant, however, during a matter dominated era we
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have ρc(t) ∝ a(t)−3 and during the radiation dominated era we have ρc(t) ∝ a(t)−4. This
means that any small deviation of ΩT from one will grow during the radiation and matter
dominated era. Likewise, going back in time we find that the value of ΩT must have been
incredibly close to 1 in the early universe. At matter-radiation equality (z = 3400) we have
roughly

ΩT − 1 < .005
1

3400
≈ 1.5× 10−6 , (5)

and at the time of the electro-weak phase transition with T ≈ 100GeV and z = 1015 we have

ΩT − 1 < .005
1

3400

(
3400

1015

)2

≈ 1.7× 10−29 . (6)

Finally, at the Planck scale T ≈MP = 2.2× 1018GeV we would have

ΩT − 1 < .005
1

3400

(
3400

1015 · 2.2× 1016

)2

≈ 3.5× 10−62 . (7)

This seems like an incredible fine tuning, which can’t be explained by just K = 0. Even
in a flat universe we would expect some locally changing value of K, since the spacetime is
dynamical in general relativity. So why is the value in our (visible) universe so incredibly
fine tuned?

1.3 The monopole problem

Alan Guth was thinking about so called grand unified theories (GUT) in which all forces
of the standard model of particle physics are unified in a single force around an energy
scale of approximately 1016GeV . This single force is broken into the strong, weak and
electromagnetic force at energies below 1016GeV and usually this phase transition leads to
unwanted relics like for example magnetic monopoles. The existence of such heavy particles
that would be produced during the phase transition can overclose the universe (Ω � 1).
So Guth’s original motivation for inflation was to remove the overabundance of these heavy
relics in GUT theories.

2 Inflation

Inflation is a period of accelerated expansion of our universe that happened at very early
times. Here we will focus on the case in which the universe is approximately exponentially
expanding as is the case during an era that is dominated by a cosmological constant. Such
a period solves the three problems above, if it lasts sufficiently long. We can make this more
precise and determine a minimal amount of exponential expansion that is required to solve
each of the problems above.

2.1 Solving the horizon problem

If in the very early universe there would have been a phase during which a(t) grows expo-
nentially, then a small patch in local thermal equilibrium could be stretched to the size of
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the surface of last scattering that we observe today and thereby solve the horizon problem.1

More precisely, if the early universe would have been in a phase with a(t) ∝ eHt, then the
beginning of the universe would not be at t = 0 anymore but at t = −∞. This would likewise
push the initial conformal time τi to −∞, while any finite period of inflation pushes τi to a
negative but finite value. This can then allow for causal contact of all the points we observe
on the surface of last scattering as is shown in figure 3.

Figure 3: The point P1 and P2 have past light-cones that can intersect, if we have a period
of exponential expansion that pushes τi sufficiently far back.

Before we discuss how such a period of inflation can arise in our very early universe,
we would like to get an estimate for how long it would have to last in order to solve the
horizon problem. From the diagram 3, it is clear that we need the conformal time between
the beginning of inflation τi and the end of inflation which is around the reheating time τreh
to be at least as large as the time between reheating and today at τ0.

Recalling that dτ ≡ a(t)−1dt we get

τreh−τi =

∫ τreh

τi

dτ ′ =

∫
dt′

a(t′)
=

∫
da

aȧ
=

∫ areh

ai

da

a2Hinf

≈ 1

aiHinf

− 1

arehHinf

≈ 1

aiHinf

, (8)

where we used that the Hubble constant during inflation is approximately constant and that
ai � areh due to the exponential expansion during inflation.

To get a very simple (but fairly accurate estimate) we assume that the universe after the
end of inflation is radiation dominated so that a(t) = a0

√
t/t0 and a2H = const. ≈ a2rehHinf

since a(t) is a smooth function. This then leads to

τ0 − τreh =

∫ τ0

τreh

dτ ′ =

∫ a0

areh

da

a2H
≈ 1

a2rehHinf

(a0 − areh) ≈
a0

a2rehHinf

, (9)

1Actually things are more complicated: Inflation itself needs somewhat special initial conditions to start,
so that the horizon problem is substantially alleviated but not completely solved. After inflation ends the
temperature of the universe is essentially zero, because T ∝ a(t)−1 and a(t) grows exponentially during
inflation. However, the inflaton field carries energy that is then used to homogeneously reheat the universe.
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where we used that a0 � areh. We then find the constraint

τreh − τi & τ0 − τreh
1

aiHinf

&
a0

a2rehHinf

areh
ai

&
a0
areh

≈ Treh
T0

, (10)

where we used in the last line that the temperature scales like the inverse of the scale factor.
For example fo inflation with an energy scale of Treh ≈ 1014GeV we then find

areh
ai

& 1026 ≈ e60 ≡ eNe . (11)

We see that the expansion factor during inflation is gigantic so that one defines the number
of e-folds Ne that is given by the logarithm to basis e of the expansion factor. The number
of e-folds required to solve the horizon problem depends on the energy scale that we chose
to be 1014GeV above and that is not known. For the inflationary models that are currently
being tested the energy scalar is very high 1015 − 1016GeV and the standard values in the
literature are Ne = 50− 60 which nicely matches with the value derived above.

2.2 Solving the flatness problem

The flatness problem is solved because during inflation a(t) ∝ ȧ(t). The large grows of ȧ(t)
then suppresses the term K

ȧ(t)2
in equation (3). If we would take K

ȧ(t)2
to be initially some

order one number and we want it to be sufficiently small at the end of inflation to explain
the observed value, then we need for example for inflation ending slightly below the GUT
scale around 1014GeV that

K

ȧ(ti)2
≈ 1 , (12)

ΩT (treh)− 1 =
K

ȧ(treh)2
. .005

1

3400

(
3400

1015 · 1012

)2

≈ 1.7× 10−53 , (13)

⇒ ȧ(treh)

ȧ(ti)
≈ a(treh)

a(ti)
&
(
1.7× 10−53

)− 1
2 ≈ e60 , (14)

where we used that during inflation a(t) ≈ eHinf t with Hinf the constant Hubble parameter
during inflation. We see that we again need roughly 60 e-folds of inflation to solve the
flatness problem and this value is of course related to the energy scale at which we would
like to solve the flatness problem. If for example we wanted to solve the flatness problem at
an energy of 100TeV , then we would only need 40 e-folds of inflation.

2.3 Solving the monopole problem

It is intuitively clear that a period of inflation will also solve the monopole problem, provided
that the monopoles and other relics are not produced after inflation. If magnetic monopoles
would be produced at the GUT scale, then a period of inflation that takes places at lower
energies dilutes away all the relics and leaves us with an almost empty universe. The amount
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of inflation necessary to solve the monopole problem is usually a little bit lower and roughly
30 e-folds are enough to sufficiently dilute the relics so that they don’t have any impact on
the cosmological evolution and wouldn’t be observable today. However, if there is a GUT
theory at energies around 1016GeV then the reheating temperature after inflation has to be
lower than this 1016GeV . The current upper bound on the energy scale during inflation is
around the GUT scale so that the reheating temperature is also bounded from above by the
GUT scale and there is no tension between grand unified theories and inflation.

3 A period of inflation from a scalar field

A great problem with an early period in our universe that is dominated by a large cos-
mological constant is that the energy density of the cosmological constant does not decay
during the expansion, while it does so for matter and radiation. This means, as we discussed
previously, that a large cosmological constant is inconsistent with our observed universe. So
what we need for inflation is a fluid that mimics a large cosmological constant for a short
period of time and then transfers its energy into the other particles of our universe during
a reheating process and afterwards essentially disappears. This can be accomplished by a
scalar field, i.e. a spinless particle similar to the Higgs field (but most likely not the standard
model Higgs particle).

The action for such a scalar field φ, that is called the inflaton, is given by

S =

∫
d4x
√
−g
(
−1

2
∂µφ∂

µφ− V (φ)

)
. (15)

Here V (φ) is the potential for the scalar field that we leave arbitrary. You can think of this
scalar field as a ‘ball’ rolling in a potential. The only difference here is that φ in principle
depends not only on the time t but also on the spatial coordinates xi so the value of φ can
change throughout space. You are probably familiar with this from electrodynamics where
the electric and magnetic fields can vary through space and time.

As is explained in the handout, the variation of the above action with respect to the
metric leads to the following energy density and pressure for a scalar field in the FRW
universe

ρφ =
1

2
φ̇2 +

1

2

(∇φ)2

a2
+ V (φ) , (16)

Pφ =
1

2
φ̇2 − 1

6

(∇φ)2

a2
− V (φ) . (17)

Note, that if the spatial variation ∇φ and the time variations φ̇ vanish, then we have ρφ =
V (φ) = −Pφ so that the scalar field behaves exactly like a cosmological constant! Guth’s
original idea was that the scalar field sits at a false minimum of the potential as shown
in figure 4. The scalar field will then lead to an effective large cosmological constant and
a period of inflation. After quantum tunneling through the barrier the scalar field will roll
down the potential to the true minimum and again lead to an effective cosmological constant
that could be the observed value of the cosmological constant today if Vtoday ≈ 10−120M4

P .
The problem with Guth’s original proposal is that the quantum tunneling will happen

via the nucleation of spatial bubbles. Inside these bubbles the field is on its way to the true
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Figure 4: The scalar fields is initially trapped in a false vacuum leading to a period of inflation
with a large cosmological constant proportional to Vinf . After quantum tunneling the scalar
field rolls to the true minimum at which the value of the potential is tiny Vtoday ∼ 10−120M4

P .

vacuum and outside of the bubbles is the false vacuum. Since the energy is smaller inside
of these bubbles, the bubble walls will expand outwards. However, it turned out that these
bubbles cannot be large enough to contain our entire universe and the collision of multiple
bubbles would lead to inhomogeneities that are larger than the ones we observe. So there is
no nice way of ending inflation in this case.

However, shortly after Guth’s original idea, Linde, Albrecht and Steinhardt proposed
another kind of inflation in which the scalar field is not trapped in a false vacuum but
simply rolling very slowly since the scalar potential is very flat as is shown in figure 5. When
the inflaton reaches a steeper part of the potential, its kinetic energy becomes important
and it does not behave like a cosmological constant anymore and inflation ends. When the
scalar fields reaches its true minimum, it will oscillate and couplings to the standard model
particles can transfer the kinetic energy of the inflaton into standard model particles which
leads to a reheating of the universe and the start of our hot universe that we can describe
so well with thermodynamics.

Figure 5: The potential is very flat so that the scalar field rolls very slowly leading to a
period of inflation with a large cosmological constant proportional to Vinf . Once the potential
steepens, inflation ends and the scalar field rolls to its true minimum with Vtoday ∼ 10−120M4

P .
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