136.012 Cosmology and particle physics

2018S, VO, 2.0h, 3.0EC

Lecturer: Timm Wrase (Freihausgebäude, Tower B, yellow section, 10th floor, DB10J03)

Email: timm.wrase@tuwien.ac.at

Organizational meeting: Monday March 5th, 15:15 – 16:00, seminar room DA green 05*

Meeting time and place: Mondays from March 12th until June 25th, 15:15-16:45,

Seminar room DA green 05*

*Freihausgebäude (Wiedner Hauptstr. 8) - Tower A, green section, 5. OG, DA05E10

Examination modalities: Grades will be based on weekly written homework. It is

possible to improve the grade by taking an oral exam.

This introductory course in "Cosmology and particle physics" is aimed primarily at Master students but open to anybody who wants to learn more about cosmology, i.e. about the study of our universe at large scales. In the course you will learn about the evolution of our universe from the Big Bang until today. In particular we will discuss the so called standard model of cosmology (the Λ CDM model). Special emphasis will be placed on inflation, a period of rapid expansion of the universe shortly after the Big Bang. We will also discuss dark energy, which is the dominating form of energy in the current universe.

Literature:

S. Weinberg: "Cosmology"

B. Ryden: "Introduction to Cosmology"

E. W. Kolb and M. S. Turner: "The early universe"

J. E. Peacock: "Cosmological physics"

P. J. E. Peebles: "Principles of Physical Cosmology"

Lecture notes that I found very useful in preparing this class:

J. Rosa: "Introduction to Cosmology", http://gravitation.web.ua.pt/index.php?q=node/247

D. Baumann: "Cosmology" http://www.damtp.cam.ac.uk/user/db275/Cosmology.pdf

To refresh or learn general relativity:

S. Carroll "Lecture Notes on General Relativity" http://arxiv.org/abs/gr-qc/9712019 R.M. Wald "General Relativity"