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Lecture 4 Our universe from 3.8× 105 to 13.8× 109 years

1 Particle and event horizon

Let us return to the FRW metric

ds2 = −dt2 + a(t)2

(
dr2

1−Kr2
+ r2dΩ2

)
. (1)

We argued that isotropy forbids mixed terms between the time and spacial coordinates. Then
by redefining the time coordinate we can choose the coefficient of dt2 to be unity. However,
there is another very convenient time coordinate, that is called conformal time and we will
denote it by τ . It is defined such that

dt2 = a(τ)2dτ 2 . (2)

This means that the FRW metric takes the form

ds2 = a(τ)2

(
−dτ 2 +

dr2

1−Kr2
+ r2dΩ2

)
. (3)

Note, that we chose K ∈ {−1, 0, 1}, so that it is clear from (1) that r, θ, φ are dimensionless,
while t and a(t) have the dimension of length or time (recall that c = 1). This then means
that τ is also dimensionless. Likewise ȧ(t) is dimensionless and

a′(τ) ≡ da

dτ
, (4)

has the dimension of length or time.
For example for K = 0 the metric (3) is just the flat space Minkowski metric multiplied by

an overall factor a(τ). Such a factor that multiplies the entire metric is called a conformal
factor, hence the name conformal time for τ . As we have seen in the first lecture the
coordinates r, θ, φ do not give us physical distances since they neglect the factor a(t)2 in the
metric. The coordinates r, θ, φ are called comoving coordinates. Many observable objects
like ‘standard candles’ have a non-zero velocity in comoving coordinates: ~vcomoving = a(t)~̇r
in addition to the velocity due to the Hubble expansion ~vHubble = ȧ(t)~r. For far away objects
the Hubble velocity is usually much larger while for close by objects like for example cepheids
in our galaxy, the Hubble velocity is negligible.

Light plays a special role in observations but also in determining the causal structure of
our universe since no information can travel faster than light. So two places that cannot
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exchange light in the lifetime of our universe are causally disconnected. Light follows a null-
geodesic which means that ds = 0. From the way we have written the metric in equation
(3), we see that in this case the scale factor a(τ) does not matter at all and for example for
a radially traveling light ray we have

ds = 0 ⇒ dτ =
dr√

1−Kr2
, (5)

independent of a(τ).

1.1 The particle horizon

Similarly to a black hole, where the event horizon indicates the horizon beyond which ob-
servers from the outside cannot see, i.e. from beyond which they cannot receive any light,
there are two important horizons in cosmology. The first horizon, which is called particle
horizon defines the maximal distance a photon can have traveled since the beginning of the
universe. In an expanding universe we have to be precise by what we mean by this distance:
We mean the current distance at time t or τ between the photon and the object that emit-
ted it at the beginning of the universe. Without loss of generality we can look at a photons
starting at the origin r = 0 and traveling outward. So we have

dH ≡ a(τ)

∫ rH

0

dr√
1−Kr2

= a(τ)

∫ τ

τi

dτ ′ = a(t)

∫ t

ti

dt′

a(t′)
, (6)

where we used (5) and (2).
For example for a matter or radiation dominated universe we have a(t) = a0(t/t0)p with

p < 1 and the beginning of the universe is at ti = 0. This leads to

dH(t0) = a0

∫ t0

0

dt′ tp0(t′)−p

a0

=
t0

1− p
<∞ . (7)

This means that light can have only traveled a finite distance since the beginning of the
universe, which is what we would have naively expected. This of course also means that we
can only see a finite part of our universe.

For a universe that is exponentially expanding due to a cosmological constant we have
a(t) = a0e

H(t−t0) and the beginning of the universe, i.e. a(ti) = 0, is at ti = −∞. This leads
to

dH(t0) =

∫ t0

−∞
dt′e−H(t′−t0) = − 1

H
e−H(t′−t0)

∣∣∣∣t0
t′=−∞

= +∞ , (8)

so that in this case the particle horizon is infinite. This fact will be tremendously important
once we discuss inflation. The reason is that the cosmic microwave background, which was
created shortly after the big bang, is essentially the same on distances much larger than the
particle horizon of a matter or radiation dominated universe. This seems in contradiction
with causality and requires us to postulate a phase of exponential expansion at the beginning
of the universe, which is called inflation.

This cosmic microwave background is the first light in our universe that we can still
observe today. It originated shortly after the big bang so the light has been traveling for
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13.8 Gyrs. We can now ask how big the visible universe is today by calculating the event
horizon

dH(t0) = a0

∫ t0

0

dt′

a(t′)
. (9)

For that purpose it is sufficient to take the matter and the cosmological constant into account
which leads to

a(t) = a0

(
Ωm,0

ΩΛ,0

) 1
3
[
sinh

(
3

2
H0

√
ΩΛ,0t

)] 2
3

. (10)

Plugging in the values from the last lecture ΩΛ,0 = .692 and Ωm,0 = .308 leads to

dH(t0) ≈ 3.4t0 ≈ 47Glyrs . (11)

So our visible universe has currently a radius of 47Glyrs, although it is only 13.8 Gyrs
old. This shouldn’t be too surprising since we know that our universe has been constantly
expanding since the big bang.

1.2 The event horizon

Another important horizon in cosmology is called the event horizon. It refers to the maximal
distance light emitted today at t0 can travel. This horizon determines which parts of space
we can exchange information with. If the event horizon is finite, then there are parts of the
universe which are causally disconnected from us and similar to the black hole, these parts
cannot send information to us (contrary to the black hole, we cannot send information to
these parts of the universe either).

The definition of the event horizon is

de ≡ a0

∫ ∞
t0

dt′

a(t′)
. (12)

Let us again first look at a matter or radiation dominated universe with a(t) = a0(t/t0)p and
p < 1. We find

de =

∫ ∞
t0

dt′ tp0
t′p

=
tp0 t

′(1−p)

1− p

∣∣∣∣∞
t′=t0

=∞ . (13)

Again this result is consistent with our naive expectation. In the infinite time until the
end of the universe the light can travel an infinite distance, so that in such a universe we
could send and receive signals from anywhere in the universe. However, as we discussed last
time our universe is currently and in the future dominated by a cosmological constant and
a(t) approaches an exponential expansion a(t) = a0e

H(t−t0). As we mentioned last time this
means that we can never see the entire universe

de =

∫ ∞
t0

dt′ e−H(t′−t0) = − 1

H
e−H(t′−t0)

∣∣∣∣∞
t′=t0

=
1

H
= const . (14)

So we see that even if the light travels infinitely long it can only tell us about places at a
finite distance. Intuitively we can understand this since the exponential expansion constantly
stretches the space between two objects. If the distant is larger than 1/H, then in any given
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amount of time the increase of the distant due to the stretching is larger than the distant
light can travel.

Since our universe has currently still a substantial amount of matter, the Hubble param-
eter is changing until in the far future the energy density is almost completely given by the
dark energy and the Hubble parameter becomes constant. This asymptotic Hubble param-
eter in our universe is actually not that different from our current value H(t =∞) ≈ 1.2H0.
So this means that we can currently exchange information with object that have a distance of
less than 1/H0 ≈ 14.4Glyrs from us, while in the far future we can only exchange information
with objects that have a distance of less than 1/H(∞) ≈ 12Glyrs.

Since during an exponential expansion objects that are not gravitationally bound to our
galaxy will move further and further away from us, they will actually leave our event horizon
in the future. This means for example that very distant galaxy clusters that we can exchange
information with today will at one point in the future leave our event horizon and become
unobservable. As mentioned last time, contrary to intuition, we will therefore be able to
exchange information with less parts of our universe in the future.

We can also ask how much of the universe we can ever observe in the future. We have
seen that the first light (the CMB) has a current distance that is far bigger than the above
event horizon. This is due to the fact that our universe in the past wasn’t dominated by
dark energy and therefore didn’t have a finite even horizon. Once we have a finite event
horizon, only light within this horizon can reach us. This means that there is light from far
distant objects that has entered our event horizon already but hasn’t reached us yet. The
maximal distance of such objects that we will be able to see in the future can be calculated
as sum of the particle and event horizon

dH(t0) + de = a0

∫ ∞
0

dt′

a(t′)
≈ 4.6t0 ≈ 64Glyrs , (15)

where we used a(t) from equation (10).

2 The cosmic microwave background (CMB)

In 1964 Arno Penzias and Robert Wilson were working on the detection of radio waves that
bounced off echo balloon satellites when they discovered a faint background of radiation
in the microwave range. Surprisingly this signal seemed to come from everywhere in the
sky. Checking their antenna they discovered a family of nesting pigeons that they removed
together with what Penzias called “white dielectric material” (aka bird poop). Nevertheless
the signal remained. At the same time some astrophysicists were planning to search for such
a signal since they had realized that, if the universe had started in a hot dense state, then the
subsequent expansion would lead to photons whose wavelength would get red-shifted due to
the expansion of the universe in such a way that their wavelength is today in the millimeter
or micrometer range. This is exactly what Penzias and Wilson discovered and for this they
were awarded the 1978 Nobel Prize.

In the subsequent decades these photons that are called the cosmic microwave background
(CMB) since they fill the universe homogeneously and isotropically have been studied by
many ground based and satellite experiments. This CMB is a clear evidence for a hot big
bang and at the same time the best tool for precision measurements in cosmology. The COBE
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satellite that was launched in 1989 was the first space-based experiment that measured the
CMB. It showed that the CMB follows the best black-body spectrum ever observed in nature
(see figure 1).

Figure 1: The black body spectrum of the CMB as measured by the COBE satellite. The
errors bars are too small to observe and it is impossible to distinguish the theoretical curve
from the measured spectrum (figure taken from Wikipedia).

George Smoot and John Mather, two of COBE’s principal investigators, were awarded
the 2006 Nobel Prize in physics for their work on the COBE project. This shows the
great importance of the CMB in understanding the evolution of our universe from the very
beginning until today.

Recall that the radiation from a black body is described by Planck’s law which gives for
c = ~ = 1

B(λ, T ) =
4π

λ5

1

e
2π

λkBT − 1
. (16)

Here kB = 8.6 × 10−5eV/K is the Boltzmann constant given in terms of elctron volts and
Kelvin. The black body spectrum of the CMB corresponds to a temperature of

TCMB,0 = 2.72548± 0.00057K ≈ −270◦C . (17)

So we see that the CMB is pretty cold. However, the wavelength of photons gets red-shifted
so that a current wavelength λ0 was at an earlier time t1 λ1 = a(t1)λ0/a0. This tells us that
the wavelength scales like a(t) and then it follows from (16) that the temperature of the
CMB scales like 1/a(t). In particular the temperature of the CMB at the earlier time t1 is
given by

TCMB(t1) =
a0

a(t1)
TCMB,0 = (1 + z)TCMB,0 . (18)
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So we see that the temperature of the CMB was much larger for a much smaller universe.
This means that the further we go back in time the hotter the universe was.

We have seen in the last lecture that the CMB radiation is only contributing a very
small amount to the current energy density of our universe. Nevertheless, the radiation
energy density has the strongest dependence on the scale factor and will therefore inevitably
dominate in the very early universe. Recall from the last lecture that the Friedmann equation
for our universe can be written as

ρc(t) = ρΛ + ρm(t) + ρrad(t) ≈ ρc(t0)

[
.7 + .3

(
a0

a(t)

)3

+ 10−4

(
a0

a(t)

)4
]
. (19)

While the cosmological constant is currently and in the future dominating the energy density,
this was different at earlier times when a(t) was much smaller than a0. In particular, if we
plot the energy density as a function of a as a log-log-plot we find the following history of
our universe:

matter era Λ eraradiation era

ρΛ

ρm

ρrad

a1 a2 a0
a

ρ

Figure 2: The evolution of our universe.

While we are currently (and in the future) in an era dominated by the dark energy, this
was different in the past. The substantial amount of matter in the universe was dominating
its evolution until fairly recently. In the far distant past, when the universe was much, much
smaller, radiation was actually the dominating form of energy density since it grows like
a(t)−4.

Recall that a curvature contribution proportional to K/a(t)2 was never the dominating
form of energy density. It is currently very small (if not zero) and will become less important
in the future since it decays with increasing a(t) while the dark energy is most likely con-
stant. Going backwards in time the matter and radiation contributions will grow faster than
the curvature so that the curvature was less important in the past. So the curvature was
never dominating but it could nevertheless be non-zero and measurable with more precise
experiments in the future. This would then not really affect the part of the evolution of our
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universe that we are currently discussing but it would be interesting on theoretical grounds
and might hint or exclude certain transitions in the very, very early universe.

Above we have argued that the temperature of the CMB is decreasing over time and
therefore in the past the universe was much hotter. From equation (19) and the plot 2 we
see that the universe in the past also had a much higher energy density. So our universe
started out in a much hotter and much denser state that then got diluted and cooled due
to the expansion of the universe. This means that we can use thermodynamics and our
knowledge of particle and nuclear physics to understand its early evolution.

3 From 380,000 years after the big bang until today

Before we delve into the more involved evolution of the early universe, let us first discuss
the evolution from the time the CMB was released until today. The following picture shows
the rather few important cosmological periods of our universe since the release of the cosmic
microwave background:

Figure 3: The evolution of our universe since the release of the cosmic microwave background
3.8× 105 years after the big bang.

As discussed before and studied in the homework, the cosmological constant started to
dominate the evolution of the scale factor a(t) a few billion years ago. However, there
is substantial amount of baryonic and dark matter in the universe and this form of non-
relativistic matter was dominating in the not too distant past.

During this matter dominated era very small deviations from a perfectly homogeneous
universe were amplified by gravity and structures started to form. We will later discuss these
inhomogeneities in more detail and understand their amazing origin: quantum fluctuations!
These very small effects in our every day life have actually led to the small inhomogeneities
that are the seeds of our stars and galaxies, which is one of the most amazing features of
our universe. As we will discuss in the next lectures a few hundred years after the big bang
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our universe was a soup of atomic nuclei, electrons and photons. The photons constantly
interacted with the electrons via Compton scattering and the negatively charged electrons
interacted with the positively charged nuclei via the Coulomb force. Atoms like hydrogen
were not stable as long as there were photons with an energy larger than the binding energy
of hydrogen which is 13.6eV , since these photons would ionize the hydrogen. However, at
around 380,000 years after the big bang the universe had cooled enough so that stable atoms
could form. The photons at this time had mostly energies below the 13.6eV threshold and
could not ionize the atoms anymore. Since the atoms are electrically neutral their interaction
with the photons became negligible at this point and the photons could essentially stream
freely. These photons are what we observe today so they have been traveling for more
than 1.3 × 1010 years! Detailed studies of the photons and particular the deviation from
homogeneity and isotropy tell us a lot about the universe at the time of the so called ‘last
scattering’ after which these photons were able to stream freely. However, these photons
also tell us about much earlier times as we will see later in this course.

As mentioned above, when neutral atoms formed roughly 380, 000 years after the big
bang, very small inhomogeneities started to amplify due to the gravitational attraction: The
initially more or less homogeneous distribution of neutral atoms contained only hydrogen,
helium and lithium. Any small inhomogeneity in such a setup will amplify due to gravity:
Denser regions will attract more matter and become even denser and therefore increase their
gravitational attraction. Such regions that become more and more dense will eventually after
a few hundred million years lead to the first stars. In these stars the gravitational attraction
is sufficiently strong to start nuclear fusion, which provides the energy for the stars to shine
and also leads to the creation of elements heavier than Lithium. These heavier elements
were then released at the end of the lifetime of the first stars in supernovae explosions.
Stars and planets like the ones in our solar system that are then later on formed contain
heavier elements. This star formation process out of the initial hydrogen and helium mixed
with some heavier elements will go on for roughly 1014 years. This follows since as we have
discussed last time a large amount of hydrogen and helium is still in clouds outside of stars.

8


	Our universe from 3.8 105 to 13.8 109 years
	Particle and event horizon
	The particle horizon
	The event horizon

	The cosmic microwave background (CMB)
	From 380,000 years after the big bang until today


