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Lecture 1 The expanding universe

In this lecture we will learn about the discovery of the expansion of our universe, as well
as the fact that the universe is homogeneous and isotropic on scales larger than a few Mpc
(megaparsec). This allows us to derive a set of simple equations, the so called Friedmann
equations, from general relativity. These equations play a central role in describing the
evolution of our universe.

1 The ‘Hubble’ expansion

When Einstein first wrote down his theory of general relativity in 1915 he was convinced (like
most other people) that our universe is static, i.e. the universe as a whole doesn’t change in
time. However, in 1929 Hubble was able to determine the distances and relative velocities of
other galaxies by observing Cepheid variables which led him to a very different universe. In
order to understand this, it is useful to first review distance measurements in astrophysics.

1.1 Astronomical unit and parsec

There are a variety of different units used in cosmology and astrophysics. One standard unit
in astrophysics is the average distance between the earth and the sun which by definition is
one astronomical unit 1au ≈ 150× 106km = 1.5× 1011m. In cosmology we are interested in
larger scales and will mostly use the parsec (pc). The definition of the parsec involves the
apparent parallax motion of near stars that is due to the earth’s motion around the sun, see
figure 1.

From simple trigonometry we find

1pc =
1au

tan(1′′)
≈ 1au

1′′
=

1au
1
60

1
60

π
180

≈ 2× 105au , (1)

where we used that tan(1′′) ≈ 1′′. We can check that one parsec is roughly the distance light
travels in three years 1pc ≈ 3.3 ly.

By measuring the parallax angle, astronomer can determine the distance of objects that
are not too far away. This leads to interesting discoveries that can then be used to determine
the distances of much further objects. In particular by studying nearby so called Cepheid
variables, astronomers found that these stars pulsate radiately with a well defined relation
between their pulsation period and luminosity L. By knowing this relation and the pulsation
period we can therefore obtain the stars luminosity L (the total ‘light’ emitted by the star).

1



Earth's motion around Sun

Distant stars

Imaginary
near star

Apparent parallax
motion of near star

Parallax angle
= 1 arc second

p

1 
P

ar
se

c

1 AU

Figure 1: The distance to an imaginary star with a parallax angle of 1′′ = 1 arc second is
one parsec (taken from Wikipedia).

The observed flux F then directly gives us the distance of the star since the observed flux
decrease with the square of the distance d to the star. In particular we find

L = 4π d2F ⇔ d =

(
L

4πF

) 1
2

. (2)

1.2 Hubble’s discovery

Hubble studied these Cepheid variables in other galaxies and galaxy clusters and determined
their distances using the above equation. In addition he used the Doppler shift of the spectral
lines in the star light to determine the relative velocities of these galaxies and galaxy clusters.
This lead him to the following plot
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Figure 2: Velocity (in km/s) vs. distance (in parsecs) for galaxies (black dots) and galaxy
clusters (circle). The solid line represents a best straight-line fit to the black dots and the
dashed line to the circles.

It follows from Hubble’s data that the further a galaxy is away from us, the faster it is
moving away from us. This observation has been substantially improved over the year, as is
shown for example in figure 3.

Figure 3: Velocity (in km/s) vs. distance (in Mpc) for Type Ia supernovae (another class of
‘standard candles’ that allows us to determine distances accurately).

Hubble’s original observation is inconsistent with a static universe and instead requires
us to consider a universe in which space itself is expanding. This is depicted in figure 4.
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Figure 4: A one dimensional universe in which space itself is expanding. This leads to a
linear relation between the relative distance and relative velocity of the earth and any other
object in this universe.

Note however, that this does not make the earth or us special in anyway. Any other
point in space will observe exactly the same ‘Hubble’ expansion of the universe, as is shown
in figure 5.

Figure 5: A one dimensional universe in which space itself is expanding. Any point in
space will observe the same effect: distant objects are moving away with a velocity that is
proportional to their distance.

Before we discuss the equations that describe such a universe, we discuss one more ob-
servational fact about our universe in the next subsection.

2 Isotropy and Homogeneity

Trying to describe the time evolution of the entire universe seems like a formidable task and
one might wonder how this can be possibly done? In cosmology we are not interested in the
details of the evolution on small scales like for example our solar system, but we would like
to describe the origin, evolution and the ultimate fate of our universe. But even that seems
intractable. Imagine a universe whose evolution is controlled by matter, i.e. at large scales
by the evolution of the galaxies. This seems correspond to an N -body problem with N of
the order of a few hundred billion (N ∼ 1011)!

Fortunately, our universe seems highly symmetric at scales larger than a few Mpc. Con-
cretely, there is ample evidence that our universe looks the same in every direction, i.e. it
is isotropic, and there are some indications that different locations in the universe allow for
the same observation that we make, i.e. the universe is homogeneous. These two proper-
ties follow from the so called ‘cosmological principle’ that postulates that we do not occupy
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any special place in the (large scale) universe and other observer at any other place in the
universe will observe the same properties of the universe.

A simple example of a 3-dimensional isotropic and homogeneous space is the flat space
R3. The line element for this case is

ds2 = dx21 + dx22 + dx23 = dx2i . (3)

Another example of a space that is the same at every point and looks the same in every
direction is the 3-sphere S3 for which we can write the line element as

ds2 = dx2i + dz2 , x2i + z2 = a2 . (4)

One can prove that the only other such space is given by a hyperspherical surface with
negative curvature and line element

ds2 = dx2i − dz2 , −x2i + z2 = a2 . (5)

By rescaling the xi and z by a, we can write the last two as

ds2 = a2
(
dx2i ± dz2

)
, z2 ± x2i = 1 . (6)

Differentiating z2 ± x2i = 1 leads to zdz = ∓xidxi and the line element

ds2 = a2
(
dx2i ±

z2dz2

z2

)
= a2

(
dx2i ±

(xidxi)
2

1∓ x2i

)
. (7)

Finally, we introduce the number K ∈ {−1, 0, 1} and combine the three line elements (3),
(4), (5) into one single equation

ds2 = a2
(
dx2i +K

(xidxi)
2

1−Kx2i

)
. (8)

Since we have chosen K to be dimensionless we have to choose the xi to be dimensionless
as well due to the denominator 1−Kx2i . Then the prefactor a needs to have the dimension
of a length. In the above equation K = 0 corresponds to the flat space case and K = ±1 to
the spherical and hyperspherical case. These three maximally symmetric three dimensional
spaces can be similarly defined in two space dimension in which case we can picture them
by embedding them into a three dimensional space, as is shown in figure 6.

As can be seen from the figure, the three spaces can be distinguish by measuring the
three angels inside a triangle. For example for a sphere one can start at the north pole with
a 90◦ angle. These two sides each meet the equator at 90◦ angles and by choosing the third
side to lie on the equator, we have constructed a triangle with total interior angles that
add up to 270◦! Generically one finds that for spherical geometries the three angles inside a
triangle are larger than 180◦, while for hyperspherical spaces they are smaller than 180◦.

Now that we have understood the spacial part of our universe, we can extend the line
element to include also time and write (note that we will set the speed of light c equal to 1
so that 1s ≈ 3× 108m)

ds2 = −dt2 + a(t)2
(
dx2i +K

(xidxi)
2

1−Kx2i

)
. (9)
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Figure 6: The three possible geometries of our universe.

This is the so called Friedmann-Roberston-Walker metric that is used to describe our uni-
verse. Note, that in addition to adding the time coordinate t, we have also allowed the
scale factor a(t) to change with time. This scale factor is the function that determines the
evolution of our universe. In order to make this more transparent let us first go to spherical
polar coordinates

dx2i = dr2 + r2dΩ2 , dΩ2 = dθ2 + sin(θ)2dφ2 , xidxi = rdr , (10)

so that the metric becomes

ds2 = −dt2 + a(t)2
(

dr2

1−Kr2
+ r2dΩ2

)
. (11)

Now we calculate the distance between an observer at the origin and an object at co-moving
radial coordinate r (we always take a(t) > 0)

d(r, t) = a(t)

∫ r

0

dr′√
1−Kr′2

= a(t)×


arcsin(r) K = +1
arcsinh(r) K = −1
r K = 0

. (12)

This implies that any object at a fixed r moves away from us, if the scale factor a(t) increases
with time. More concretely, by differentiating the above equation we can establish the linear
relationship between the distance and the velocity

v =
∂d(r, t)

∂t
=
ȧ(t)

a(t)
d(r, t) ≡ H d(r, t) . (13)

In the last equation we defined

H(t) =
ȧ(t)

a(t)
, (14)

where H(t) is the so called Hubble parameter since Hubble discovered this linear relationship.
So we see that our FRW metric is correctly capturing Hubble’s original observation in figure
2 provided that ȧ(t) > 0.
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3 The Friedmann equations

The evolution of the scale factor a(t) is determined by the matter and energy content of the
universe using general relativity. If you are not familiar with general relativity then the set
of equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (15)

might look rather intimidating and this paragraph might seems rather complicated. In this
case you can jump ahead to the next paragraph. In an isotropic and homogeneous universe
Einstein’s equations boils down to two rather simple equations for a(t). The left-hand-
side of the above equation is entirely determined by the FRW metric given above and the
cosmological constant Λ. The right-hand-side is determined by the energy-momentum tensor
Tµν that encodes the matter and energy in our universe. In a homogeneous and isotropic
universe its spacial part has to be proportional to the metric Tij = p(t)gij, where we allowed
for an arbitrary time dependent function p(t). The time component Ttt = ρ(t) is also an
arbitrary function. Finally, the mixed space-time components are a 3-vector. However, such
a vector, if non-vanishing, would single out a particular direction which is inconsistent with
isotropy that demands that the universe is the same in all directions so we have Tti = 0.

Solving Einstein’s equations above leads to the following two equations1 that are called
Friedmann’s equations(

ȧ(t)

a(t)

)2

+
K

a(t)2
− Λ

3
=

8πG

3
ρ(t) , (16)

ä(t)

a(t)
− Λ

3
= −4πG

3
(ρ(t) + 3p(t)) . (17)

These equations involve three new quantities that deserve further discussion: The parameter
Λ is called a cosmological constant and as we will see shortly we can remove it from the
equations by shifting ρ and p. So this means that in an homogeneous and isotropic universe
we can describe any kind of matter, radiation and energy with just two quantities. What
are these and how do we understand them intuitively? A homogeneous universe obviously
requires a distribution of energy and matter that does not depend on the spacial coordinates,
so instead of dealing with for example empty space dotted with galaxies we can take a
continuum limit and think of it as a continuous distribution of matter. You might be
familiar with similar approximations when describing air or water. Instead of describing
all individual molecules, we describe the whole system as a continuous fluid. The quantity
ρ(t) describes the energy density (recall that mass equals energy due to E = mc2) and the
function p(t) describes the pressure of this fluid.

By looking at the equations (16), (17) we note that ρ and p can describe a cosmological
constant. In particular, if we shift them such that

ρ→ ρ− Λ

8πG
, p→ p+

Λ

8πG
, (18)

1Depending on your level of familiarity with general relativity I encourage you to either derive these
equations yourself or to take a look at the file on the website that gives the detailed derivation.
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then we remove Λ and find the Friedmann equations(
ȧ(t)

a(t)

)2

+
K

a(t)2
=

8πG

3
ρ(t) , (19)

ä(t)

a(t)
= −4πG

3
(ρ(t) + 3p(t)) . (20)

These rather simple equations govern our universe from a split second after the big bang
until today. All we need for this is the knowledge of ρ(t) and p(t), i.e. of the matter and
energy content of our universe. As we will see in the next lecture, these functions are not
too complicated and usually at each time there is one form of energy that is dominating the
expressions so that we can solve the Friedmann equations analytically.

Differentiating (19) we get

8πG

3
ρ̇(t) = 2

ȧ(t)

a(t)

(
ä(t)

a(t)
−
(
ȧ(t)

a(t)

)2

− K

a(t)2

)
. (21)

Using now equation (19) and (20) and recalling that H = ȧ/a we find the continuity equation:

ρ̇(t) + 3H (ρ(t) + p(t)) = 0 . (22)

This equation will be useful, when we discuss the different matter and energy content of the
universe in the next lecture.
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